【題目】如圖,平行四邊形ABCD中,∠A+∠C=80°,平行四邊形的周長是40cm,且AB-BC=2cm,求平行四邊形各邊的長和各內(nèi)角的度數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)y=﹣2x+1,下列結(jié)論正確的是( 。
A. 圖象必經(jīng)過點(﹣2,1) B. 圖象經(jīng)過第一、二、三象限
C. 當(dāng)x>時,y<0 D. y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】乘法公式的探究與應(yīng)用:
(1)如圖甲,邊長為a的大正方形中有一個邊長為b的小正方形,請你寫出陰影部分面積是 (寫成兩數(shù)平方差的形式)
(2)小穎將陰影部分裁下來,重新拼成一個長方形,如圖乙,則長方形的長是 ,寬是 ,面積是 (寫成多項式乘法的形式).
(3)比較甲乙兩圖陰影部分的面積,可以得到公式 (用式子表達)
(4)運用你所得到的公式計算:10.3×9.7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點,點A的坐標(biāo)為(2,6),點B的坐標(biāo)為(n,1).
(1)求反比例函數(shù)與一次函數(shù)的表達式;
(2)結(jié)合圖像寫出不等式的解集;
(3)點E為y軸上一個動點,若S△AEB=10,求點E的坐標(biāo).
【答案】(1)y=,y=-x+7(2)0<x<2或x>12(3)點E的坐標(biāo)為(0,5)或(0,9)
【解析】試題分析:(1)把點A的坐標(biāo)代入反比例函數(shù)解析式,求出反比例函數(shù)的解析式,把點B的坐標(biāo)代入已求出的反比例函數(shù)解析式,得出n的值,得出點B的坐標(biāo),再把A、B的坐標(biāo)代入直線,求出k、b的值,從而得出一次函數(shù)的解析式;
(2)設(shè)點E的坐標(biāo)為(0,m),連接AE,BE,先求出點P的坐標(biāo)(0,7),得出PE=|m﹣7|,根據(jù)S△AEB=S△BEP﹣S△AEP=10,求出m的值,從而得出點E的坐標(biāo).
解:(1)把點A(2,6)代入y=,得m=12,則y=.
把點B(n,1)代入y=,得n=12,則點B的坐標(biāo)為(12,1).
由直線y=kx+b過點A(2,6),點B(12,1),
則所求一次函數(shù)的表達式為y=﹣x+7.
(2)或;
(3)如圖,直線AB與y軸的交點為P,設(shè)點E的坐標(biāo)為(0,m),連接AE,BE,則點P的坐標(biāo)為(0,7).∴PE=|m﹣7|.
∵S△AEB=S△BEP﹣S△AEP=10,∴×|m﹣7|×(12﹣2)=10.
∴|m﹣7|=2.∴m1=5,m2=9.∴點E的坐標(biāo)為(0,5)或(0,9).
【題型】解答題
【結(jié)束】
26
【題目】太倉市為了加快經(jīng)濟發(fā)展,決定修筑一條沿江高速鐵路,為了使工程提前半年完成,需要將工作效率提高25%。原計劃完成這項工程需要多少個月?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個與,保持不動,且的一邊,另一邊DE與直線OB相交于點F.
若,,解答下列問題:
如圖,當(dāng)點E、O、D在同一條直線上,即點O與點F重合,則______;
當(dāng)點E、O、D不在同一條直線上,畫出圖形并求的度數(shù);
在的前提下,若,,且,請直接寫出的度數(shù)用含、的式子表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司研發(fā)1000件新產(chǎn)品,需要精加工后才能投放市場.現(xiàn)在甲、乙兩個工廠加工這批產(chǎn)品,已知甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天,而乙工廠每天加工的件數(shù)是甲工廠每天加工件數(shù)的1.25倍,公司需付甲工廠加工費用每天100元,乙工廠加工費用每天125元.
(1)甲、乙兩個工廠每天各能加工多少件新產(chǎn)品?
(2)兩個工廠同時合作完成這批產(chǎn)品,共付加工費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點O逆時針方向旋轉(zhuǎn)90°
得到△OA1B1 .
(1)線段A1B1的長是 , ∠AOA1的度數(shù)是;
(2)連結(jié)AA1 , 求證:四邊形OAA1B1是平行四邊形;
(3)求四邊形OAA1B1的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com