【題目】二次函數(shù)y=﹣x2+mx的圖象如圖,對(duì)稱軸為直線x2,若關(guān)于x的一元二次方程﹣x2+mxt0t為實(shí)數(shù))在1x5的范圍內(nèi)有解,則t的取值范圍是_____

【答案】5t4

【解析】

先利用拋物線的對(duì)稱軸求出m得到拋物線解析式為y=﹣x2+4x,再計(jì)算出自變量為15對(duì)應(yīng)的函數(shù)值,然后利用函數(shù)圖象寫出直線yt與拋物線y=﹣x2+4x1x5時(shí)有公共點(diǎn)時(shí)t的范圍即可.

解:∵拋物線的對(duì)稱軸為直線x=﹣2,解得m4

∴拋物線解析式為y=﹣x2+4x,

拋物線的頂點(diǎn)坐標(biāo)為(2,4),

當(dāng)x1時(shí),y=﹣x2+4x=﹣1+43

當(dāng)x5時(shí),y=﹣x2+4x=﹣25+20=﹣5,

當(dāng)直線yt與拋物線y=﹣x2+4x1x5時(shí)有公共點(diǎn)時(shí),﹣5t4,如圖.

所以關(guān)于x的一元二次方程﹣x2+mxt0t為實(shí)數(shù))在1x5的范圍內(nèi)有解,t的取值范圍為﹣5t4

故答案為﹣5t4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋中裝有4個(gè)分別標(biāo)有數(shù)字﹣1,﹣23,4的小球,它們的形狀、大小完全相同.小紅先從口袋中隨機(jī)摸出一個(gè)小球記下數(shù)字為x;小穎在剩下的3個(gè)小球中隨機(jī)摸出一個(gè)小球記下數(shù)字為y

(1)小紅摸出標(biāo)有數(shù)字3的小球的概率是 .

(2)請(qǐng)用樹狀圖或列表法表示出由x,y確定的點(diǎn)P(x,y)所有可能的結(jié)果;

(3)若規(guī)定:點(diǎn)P(x,y)在第一象限或第三象限小紅獲勝;點(diǎn)P(xy)在第二象限或第四象限則小穎獲勝.請(qǐng)分別求出兩人獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果店以4元/千克的價(jià)格購(gòu)進(jìn)一批水果,由于銷售狀況良好,該店又再次購(gòu)進(jìn)同一種水果,第二次進(jìn)貨價(jià)格比第一次每千克便宜了0.5元,所購(gòu)水果重量恰好是第一次購(gòu)進(jìn)水果重量的2倍,這樣該水果店兩次購(gòu)進(jìn)水果共花去了2200元.

(1)該水果店兩次分別購(gòu)買了多少元的水果?

(2)在銷售中,盡管兩次進(jìn)貨的價(jià)格不同,但水果店仍以相同的價(jià)格售出,若第一次購(gòu)進(jìn)的水果有3%的損耗,第二次購(gòu)進(jìn)的水果有5%的損耗,該水果店希望售完這些水果獲利不低于1244元,則該水果每千克售價(jià)至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從三角形不是等腰三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.

如圖1,在中,CD為角平分線,,求證:CD的完美分割線.

中,,CD的完美分割線,且為等腰三角形,求的度數(shù).

如圖2,中,,,CD的完美分割線,且是以CD為底邊的等腰三角形,求完美分割線CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個(gè)以點(diǎn)D為頂點(diǎn)的45°角繞點(diǎn)D旋轉(zhuǎn),使角的兩邊分別與AC、BC的延長(zhǎng)線相交,交點(diǎn)分別為點(diǎn)E,F,DFAC交于點(diǎn)MDEBC交于點(diǎn)N

1)如圖1,若CE=CF,求證:DE=DF;

2)如圖2,在∠EDF繞點(diǎn)D旋轉(zhuǎn)的過(guò)程中:

探究三條線段AB,CECF之間的數(shù)量關(guān)系,并說(shuō)明理由;

CE=4CF=2,求DN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,BC為⊙O的弦,點(diǎn)A為⊙O上一個(gè)動(dòng)點(diǎn),△OBC的周長(zhǎng)為16.過(guò)CCDAB交⊙OD,BDAC相交于點(diǎn)P,過(guò)點(diǎn)PPQAB交于Q,設(shè)∠A的度數(shù)為α

1)如圖1,求∠COB的度數(shù)(用含α的式子表示);

2)如圖2,若∠ABC90°時(shí),AB8,求陰影部分面積(用含α的式子表示);

3)如圖1,當(dāng)PQ2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,,,以點(diǎn)A為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)矩形ABCD,旋轉(zhuǎn)角為,得到矩形AEFG,點(diǎn)B、點(diǎn)C、點(diǎn)D的對(duì)應(yīng)點(diǎn)分別為點(diǎn)E、點(diǎn)F、點(diǎn)G

如圖,當(dāng)點(diǎn)E落在DC邊上時(shí),直寫出線段EC的長(zhǎng)度為______;

如圖,當(dāng)點(diǎn)E落在線段CF上時(shí),AEDC相交于點(diǎn)H,連接AC,

求證:;

直接寫出線段DH的長(zhǎng)度為______

如圖設(shè)點(diǎn)P為邊FG的中點(diǎn),連接PB,PE,在矩形ABCD旋轉(zhuǎn)過(guò)程中,的面積是否存在最大值?若存在請(qǐng)直接寫出這個(gè)最大值;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:

如圖(1),在平面直角坐標(biāo)系xOy中,已知點(diǎn)A的坐標(biāo)是(1,2),點(diǎn)B的坐標(biāo)是(3,4),過(guò)點(diǎn)A、點(diǎn)B作平行于x軸、y軸的直線相交于點(diǎn)C,得到RtABC,由勾股定理可得,線段AB

得出結(jié)論:

1)若A點(diǎn)的坐標(biāo)為(x1,y1),B點(diǎn)的坐標(biāo)為(x2,y2)請(qǐng)你直接用A、B兩點(diǎn)的坐標(biāo)表示A、B兩點(diǎn)間的距離;

應(yīng)用結(jié)論:

2)若點(diǎn)Py軸上運(yùn)動(dòng),試求當(dāng)PAPB時(shí),點(diǎn)P的坐標(biāo).

3)如圖(2)若雙曲線L1yx0)經(jīng)過(guò)A12)點(diǎn),將線段OA繞點(diǎn)O旋轉(zhuǎn),使點(diǎn)A恰好落在雙曲線L2y=﹣x0)上的點(diǎn)D處,試求A、D兩點(diǎn)間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=m.若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),則花園面積S的最大值為( 。

A. 193 B. 194 C. 195 D. 196

查看答案和解析>>

同步練習(xí)冊(cè)答案