【題目】如圖1,是用量角器一個角的操作示意圖,量角器的讀數從M點開始(即M點的讀數為0),如圖2,把這個量角器與一塊30°(∠CAB=30°)角的三角板拼在一起,三角板的斜邊AB與量角器所在圓的直徑MN重合,現有射線C繞點C從CA開始沿順時針方向以每秒2°的速度旋轉到與CB,在旋轉過程中,射線CP與量角器的半圓弧交于E.連接BE.
(1)當射線CP經過AB的中點時,點E處的讀數是 ,此時△BCE的形狀是 ;
(2)設旋轉x秒后,點E處的讀數為y,求y與x的函數關系式;
(3)當CP旋轉多少秒時,△BCE是等腰三角形?
【答案】(1)60°,直角三角形;(2)y=4x(0≤x≤45);(3)7.5秒或30秒
【解析】
(1)根據圓周角定理即可解決問題;
(2)如圖2﹣2中,由題意∠ACE=2x,∠AOE=y,根據圓周角定理可知∠AOE=2∠ACE,可得y=2x(0≤x≤45);
(3)分兩種情形分別討論求解即可;
解:(1)如圖2﹣1中,
∵∠ACB=90°,OA=OB,
∴OA=OB=OC,
∴∠OCA=∠OAC=30°,
∴∠AOE=60°,
∴點E處的讀數是60°,
∵∠E=∠BAC=30°,OE=OB,
∴∠OBE=∠E=30°,
∴∠EBC=∠OBE+∠ABC=90°,
∴△EBC是直角三角形;
故答案為60°,直角三角形;
(2)如圖2﹣2中,
∵∠ACE=2x,∠AOE=y,
∵∠AOE=2∠ACE,
∴y=4x(0≤x≤45).
(3)①如圖2﹣3中,當EB=EC時,EO垂直平分線段BC,
∵AC⊥BC,
∵EO∥AC,
∴∠AOE=∠BAC=30°,
∴∠ECA=∠AOE=15°,
∴x=7.5.
②若2﹣4中,當BE=BC時,
易知∠BEC=∠BAC=∠BCE=30°,
∴∠OBE=∠OBC=60°,
∵OE=OB,
∴△OBE是等邊三角形,
∴∠BOE=60°,
∴∠AOB=120°,
∴∠ACE=∠ACB=60°,
∴x=30,
綜上所述,當CP旋轉7.5秒或30秒時,△BCE是等腰三角形;
科目:初中數學 來源: 題型:
【題目】我們將如圖所示的兩種排列形式的點的個數分別稱作“三角形數”(如1,3,6,10…)和“正方形數”(如1,4,9,16…),在小于200的數中,設最大的“三角形數”為m,最大的“正方形數”為n,則m+n的值為( 。
A. 33 B. 301 C. 386 D. 571
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y=(x<0)的圖象過格點(網格線的交點)P.
(1)求反比例函數的解析式;
(2)在圖中用直尺和2B鉛筆畫出兩個三角形(不寫畫法),要求每個三角形均需滿足下列兩個條件:
①三個頂點均在格點上,且其中兩個頂點分別是點O,點P;
②三角形的面積等于|k|的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線ybx+c,經過點A(1,3)、B(0,1),過點A作x軸的平行線交拋物線于另一點C
(1)求拋物線的表達式及其頂點坐標;
(2)如圖1,點G是BC上方拋物線上的一個動點,分別過點G作GH⊥BC于點H、作GE⊥x軸于點E,交BC于點F,在點G運動的過程中,△GFH的周長是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由;
(3)如圖2,過A點的直線垂直x軸于點M,點N為直線AM上任意一點,當△BCN為直角三角形時,請直接寫出點N的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:在Rt△ABC中,∠ACB=90°,AC=BC,點D在直線AB上,連接CD,并把CD繞點C逆時針旋轉90°到CE.
(1)如圖1,點D在AB邊上,線段BD、BE、CD的數量關系為 .
(2)如圖2,點D在點B右側,請猜想線段BD、BE、CD的數量關系,并證明你的結論.
(3)如圖3,點D在點A左側,BC=,AD=BE=1,請直接寫出線段EC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(0,4),B(3,4),P 為線段 OA 上一動點,過 O,P,B 三點的圓交 x 軸正半軸于點 C,連結 AB, PC,BC,設 OP=m.
(1)求證:當 P 與 A 重合時,四邊形 POCB 是矩形.
(2)連結 PB,求 tan∠BPC 的值.
(3)記該圓的圓心為 M,連結 OM,BM,當四邊形 POMB 中有一組對邊平行時,求所有滿足條件的 m 的值.
(4)作點 O 關于 PC 的對稱點O ,在點 P 的整個運動過程中,當點O 落在△APB 的內部 (含邊界)時,請寫出 m 的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A(12,0),O為坐標原點,P是線段OA上任一點(不含端點O、A),二次函數y1的圖象過P、O兩點,二次函數y2的圖象過P、A兩點,它們的開口均向下,頂點分別為B、C,射線OB與射線AC相交于點D.則當OD=AD=9時,這兩個二次函數的最大值之和等于( 。
A. 8 B. 3 C. 2 D. 6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:兩條長度相等,且它們所在的直線互相垂直,我們稱這兩條線段互為等垂線段.如圖①,直線y=2x+4與x軸交于點A,與y軸交于點 B.
(1)若線段AB與線段BC互為等垂線段.求A、B、C的坐標.
(2)如圖②,點D是反比例函數y=﹣的圖象上任意一點,點E(m,1),線段DE與線段AB互為等垂線段,求m的值;
(3)拋物線y=ax2+bx+c(a≠0)經過A、B兩點.
①用含a的代數式表示b.
②點P為平面直角坐標系內的一點,在拋物線上存在點Q,使得線段PQ與線段AB互為等垂線段,且它們互相平分,請直接寫出滿足上述條件的a值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,⊙M經過原點O(0,0),點A(,0)與點B(0,-),點D在劣弧上,連結BD交x軸于點C,且∠COD=∠CBO.
(1)求⊙M的半徑;
(2)求證:BD平分∠ABO;
(3)在線段BD的延長線上找一點E,使得直線AE恰為⊙M的切線,求此時點E的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com