【題目】閱讀理解:給定一個(gè)矩形,如果存在另一個(gè)矩形,它的周長(zhǎng)和面積分別是已知矩形的周長(zhǎng)和面積的一半,則這個(gè)矩形是給定矩形的“減半”矩形.如圖,矩形是矩形的“減半”矩形.
請(qǐng)你解決下列問(wèn)題:
(1)當(dāng)矩形的長(zhǎng)和寬分別為,時(shí),它是否存在“減半”矩形?請(qǐng)作出判斷,并說(shuō)明理由.
(2)邊長(zhǎng)為的正方形存在“減半”正方形嗎?如果存在,求出“減半”正方形的邊長(zhǎng);如果不存在,請(qǐng)說(shuō)明理由.
【答案】(1)存在;理由見(jiàn)解析;(2)不存在,理由見(jiàn)解析.
【解析】
(1)假設(shè)存在,不妨設(shè)“減半”矩形的長(zhǎng)和寬分別為x、y,根據(jù)如果存在另一個(gè)矩形,它的周長(zhǎng)和面積分別是已知矩形的周長(zhǎng)和面積的一半,可列出方程組求解.
(2)正方形和其他的正方形是相似圖形,周長(zhǎng)比是2,面積比就應(yīng)該是4,所以不存在“減半”正方形.
解:(1)存在
假設(shè)存在,不妨設(shè)“減半”矩形的長(zhǎng)和寬分別為,,則,
由①,得:,③
把③代入②,得,
解得,.
所以“減半”矩形長(zhǎng)和寬分別為與.
(2)不存在
因?yàn)閮蓚(gè)正方形是相似圖形,當(dāng)它們的周長(zhǎng)比為時(shí),面積比必定是,
所以正方形不存在“減半”正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,對(duì)角線AC和BD相交于點(diǎn)O,AC=10,BD=4,動(dòng)點(diǎn)P在邊AB上運(yùn)動(dòng),以點(diǎn)O為圓心,OP為半徑作⊙O,CQ切⊙O于點(diǎn)Q,則在點(diǎn)P運(yùn)動(dòng)過(guò)程中,CQ的長(zhǎng)的最大值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)在軸正半軸上,軸,點(diǎn)的橫坐標(biāo)都是,且,點(diǎn)在上,若反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),且.
(1)求點(diǎn)坐標(biāo);
(2)將沿著折疊,設(shè)頂點(diǎn)的對(duì)稱點(diǎn)為,試判斷點(diǎn)是否恰好落在直線上,為什么.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】取三張形狀大小一樣,質(zhì)地完全的相同卡片,在三張卡片上分別寫(xiě)上“李明、王強(qiáng)、孫偉”這三個(gè)同學(xué)的名字,然后將三張卡片放入一個(gè)不透明的盒子里.
(1)林老師從盒子中任取一張,求取到寫(xiě)有李明名字的卡片概率是多少?
(2)林老師從盒子中取出一張卡片,記下名字后放回,再?gòu)暮凶又腥〕龅诙䦶埧ㄆ,記下名字.用列表或?huà)樹(shù)形圖列出林老師取到的卡片的所有可能情況,并求出兩次都取到寫(xiě)有李明名字的卡片的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在屋樓崮西側(cè)一個(gè)坡度(或坡比)的山坡上發(fā)現(xiàn)有一棵古樹(shù).測(cè)得古樹(shù)底端到山腳點(diǎn)的距離米,在距山腳點(diǎn)水平距離米的點(diǎn)處,測(cè)得古樹(shù)頂端的仰角(古樹(shù)與山坡的剖面、點(diǎn)在同一平面上,古樹(shù)與直線垂直),則古樹(shù)的高度約為( )
A.米B.米C.米D.米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在坐標(biāo)平面內(nèi),△ABC的頂點(diǎn)位置如圖所示.
(1)將△ABC作平移交換(x,y)→(x+2,y-3)得到,畫(huà)出.
(2)以點(diǎn)O為位似中心縮小得到,使與的相似比為1:2,且點(diǎn)A與其對(duì)應(yīng)點(diǎn)位于點(diǎn)O的兩側(cè),畫(huà)出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A坐標(biāo)為(-8,0),點(diǎn)B坐標(biāo)為(0,6),⊙O的半徑為4(O為坐標(biāo)原點(diǎn)),點(diǎn)C是⊙O上一動(dòng)點(diǎn),過(guò)點(diǎn)B作直線AC的垂線BP,P為垂足.點(diǎn)C在⊙O上運(yùn)動(dòng)一周,則點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=x2+x﹣4與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)連接BC,P是線段BC上方拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作PH⊥BC于點(diǎn)H,當(dāng)PH長(zhǎng)度最大時(shí),在△APB內(nèi)部有一點(diǎn)M,連接AM、BM、PM,求AM+BM+PM的最小值.
(2)若點(diǎn)D是OC的中點(diǎn),將拋物線y=x2+x﹣4沿射線AD方向平移個(gè)單位得到新拋物線y′,C′是拋物線y′上與C對(duì)應(yīng)的點(diǎn),拋物線y'的對(duì)稱軸上有一動(dòng)點(diǎn)N,在平面直角坐標(biāo)系中是否存在一點(diǎn)S,使得C′、N、B、S為頂點(diǎn)的四邊形是矩形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)S的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,的頂點(diǎn),分別在,邊上,高與正方形的邊長(zhǎng)相等,連接分別交,于點(diǎn),,下列說(shuō)法:①;②連接,,則為直角三角形;③;④若,,則的長(zhǎng)為,其中正確結(jié)論的個(gè)數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com