【題目】某大型商場銷售一種茶具和茶碗,茶具每套定價2000元,茶碗每只定價200元,“雙十一”期間商場決定開展促銷活動,活動期間向客戶提供兩種優(yōu)惠方案,方案一:買一套茶具送一只茶碗;方案二,茶具和茶碗按定價的九五折付款,現(xiàn)在某客戶要到商場購買茶具30套,茶碗只().
(1)若客戶按方案一,需要付款 元;若客戶按方案二,需要付款 元.(用含的代數(shù)式表示)
(2)若,試通過計算說明此時哪種購買方案比較合適?
(3)當(dāng),能否找到一種更為省錢的方案,如果能是寫出你的方案,并計算出此方案應(yīng)付錢數(shù);如果不能說明理由.
【答案】(1);;(2)方案一更合適;(3)可以有更合適的購買方式,按方案一購買30套茶具和30只茶碗,需要元,按方案二購買剩余10只茶碗,需要元,共計元.
【解析】
(1)方案一費(fèi)用:30套茶具費(fèi)用+(x﹣30)條茶碗費(fèi)用;方案二費(fèi)用:(30套茶具費(fèi)用+x條茶碗費(fèi)用)×0.95,把相關(guān)數(shù)值代入求解即可;
(2)把x=40代入(1)得到的式子進(jìn)行計算,然后比較結(jié)果即可;
(3)根據(jù)題意得出按方案一購買30套茶具和30只茶碗,方案二購買剩余的10只茶碗,然后再進(jìn)行計算即可.
(1)方案一費(fèi)用:2000×30+200(x-30)=(200x+54000)元;
方案二費(fèi)用:(2000×30+200x)×0.95=(190x+57000)元;
(2)當(dāng)時,
方案一:(元)
方案二:(元)
因為
所以方案一更合適.
(3)可以有更合適的購買方式,
按方案一購買30套茶具和30只茶碗,需要(元)
按方案二購買剩余10只茶碗,需要(元)
所以,共計(元).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1, 點在直線上, ,將.繞著點以的速度逆時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)時間為.
(1)如圖2,當(dāng)平分時,______; 圖中的補(bǔ)角有: ______;
(2)如圖3,當(dāng)時,平分, 平分,求的度數(shù);
(3)在繞著點逆時針旋轉(zhuǎn)的過程中,當(dāng)______時,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠D=∠C=90°,E是DC的中點,AE平分∠DAB,∠DEA=28°,則∠ABE的度數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩塊直角三角形紙板如圖①擺放,,現(xiàn)將繞點逆時針轉(zhuǎn)動;
當(dāng)轉(zhuǎn)動至圖②位置時,若,且平分平分,則 _;
當(dāng)轉(zhuǎn)動至圖③位置時,平分平分,求的度數(shù);
當(dāng)轉(zhuǎn)動至圖④位置時,平分平分,請直接寫出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】依據(jù)國家實行的《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》,對懷柔區(qū)初一學(xué)生身高進(jìn)行抽樣調(diào)查,以便總結(jié)懷柔區(qū)初一學(xué)生現(xiàn)存的身高問題,分析其影響因素,為學(xué)生的健康發(fā)展及學(xué)校體育教育改革提出合理項建議.已知懷柔區(qū)初一學(xué)生有男生840人,女生800人,他們的身高在150≤x<175范圍內(nèi),隨機(jī)抽取初一學(xué)生進(jìn)行抽樣調(diào)查.抽取的樣本中,男生比女生多2人,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:
根據(jù)統(tǒng)計圖表提供的信息,下列說法中
①抽取男生的樣本中,身高在155≤x<165之間的學(xué)生有18人;
②初一學(xué)生中女生的身高的中位數(shù)在B組;
③抽取的樣本中,抽取女生的樣本容量是38;
④初一學(xué)生身高在160≤x<170之間的學(xué)生約有800人.
其中合理的是
A. ①② B. ①④ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為2的菱形,E,F分別是AB,AD的中點,連接EF,EC,將△FAE繞點F旋轉(zhuǎn)180°得到△FDM.
(1)補(bǔ)全圖形并證明:EF⊥AC;
(2)若∠B=60°,求△EMC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線相交于A,B兩點,A點坐標(biāo)為(-3,2),B點坐標(biāo)為(n,-3).
(1)求一次函數(shù)和反比例函數(shù)表達(dá)式;
(2)如果點P是x軸上一點,且△ABP的面積是5,直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接期末考試,某中學(xué)對全校七年級學(xué)生進(jìn)行了一次數(shù)學(xué)摸底考試,并隨機(jī)抽取了部分學(xué)生的測試成績作為樣本進(jìn)行分析,繪制成了如圖兩幅不完整的統(tǒng)計圖,請根據(jù)圖中所給出的信息,解答下列問題:
(1)在這次調(diào)查中,被抽取的學(xué)生的總?cè)藬?shù)為多少?
(2)請將表示成績類別為“中”的條形統(tǒng)計圖補(bǔ)充完整.
(3)在扇形統(tǒng)計圖中,表示成績類別為“優(yōu)”的扇形所對應(yīng)的圓心角的度數(shù)是多少?
(4)學(xué)校七年級共有1000人參加了這次數(shù)學(xué)考試,估計該校七年級共有多少名學(xué)生的數(shù)學(xué)成績可以達(dá)到優(yōu)秀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(﹣2,1),B(1,4),若反比例函數(shù)y=與線段AB有公共點時,k的取值范圍是( 。
A. ﹣≤k<0或0<k≤4 B. k≤﹣2或k≥4
C. ﹣2≤k<0或k≥4 D. ﹣2≤k<0或0<k≤4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com