【題目】利用計算器求值(精確到0.0001):tan27°15′+cos63°42′=
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,∠MON=90°,點A、B分別在OM、ON上運動(不與點O重合).
(1)若BC是∠ABN的平分線,BC的反方向延長線與∠BAO的平分線交與點D. ①若∠BAO=60°,則∠D=°.
②猜想:∠D的度數(shù)是否隨A,B的移動發(fā)生變化?并說明理由 .
(2)若∠ABC= ∠ABN,∠BAD= ∠BAO,則∠D=°.
(3)若將“∠MON=90°”改為“∠MON=α(0°<α<180°)”,∠ABC= ∠ABN,∠BAD= ∠BAO,其余條件不變,則∠D=°(用含α、n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,點E在CB的延長線上,連結AC、AE,∠ACB=∠BAE=45°.
(1)求證:AE是⊙O的切線;
(2)若AB=AD,AC=,tan∠ADC=3,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關系式.
(2)彈珠在軌道上行駛的最大速度.
(3)求彈珠離開軌道時的速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知小正方形的邊長為2厘米,大正方形的邊長為4厘米,起始狀態(tài)如圖所示,大正方形固定不動,把小正方形以1厘米∕秒的速度向右沿直線平移,設平移的時間為t秒,兩個正方形重疊部分的面積為S平方厘米.完成下列問題:
(1)當t=1.5秒時,S=平方厘米;
(2)當S=2時,小正方形平移的時間為秒.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com