【題目】如圖所示,在平面直角坐標(biāo)系中,已知,,.
(1)在圖中畫出,的面積是_____________;
(2)若點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,則點(diǎn)的坐標(biāo)為_____________;
(3)已知為軸上一點(diǎn),若的面積為,求點(diǎn)的坐標(biāo).
【答案】(1)4;(2);(3)或
【解析】
(1)根據(jù)指標(biāo)坐標(biāo)系中點(diǎn)的位置畫出△ABC,作C垂直于y軸直線垂足為E, 作C垂直于x軸直線垂足為F,△ABC的面積等于矩形CEOF減去△CEA,△ABO,△BCF即可.
(2)根據(jù)對(duì)稱軸的性質(zhì)求出D坐標(biāo)即可;
(3)△ACQ的高是CE為4,根據(jù)面積公式求出AQ,注意Q點(diǎn)為兩組坐標(biāo).
解:(1)如圖所示:S△ABC=S矩形CEOF-S△ABO-S△CEA-S△BCF
= ;
故答案為:;
(2)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,則點(diǎn)的坐標(biāo)為:;
故答案為:;
(3)為軸上一點(diǎn),的面積為,
,
故點(diǎn)坐標(biāo)為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,
(1)求k的值;
(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍;
(3)過原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶八中宏帆中學(xué)某年級(jí)為了選拔參加“全國(guó)漢字聽寫大賽”重慶賽區(qū)比賽的隊(duì)員,特在年級(jí)舉行全體學(xué)生的“漢字聽寫”比賽,首輪每位學(xué)生聽寫漢字39個(gè).現(xiàn)隨機(jī)抽取了部分學(xué)生的聽寫結(jié)果,繪制成如圖的圖表.
組別 | 正確字?jǐn)?shù)x | 人數(shù) |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據(jù)以上信息完成下列問題:
(1)統(tǒng)計(jì)表中的m= ,n= ,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)已知該年級(jí)共有1500名學(xué)生,如果聽寫正確的字的個(gè)數(shù)不少于24個(gè)則進(jìn)入第二輪的比賽,請(qǐng)你估計(jì)本次聽寫比賽順利進(jìn)入第二輪的學(xué)生人數(shù);
(3)第二輪比賽過后,為了更有針對(duì)性地應(yīng)對(duì)本次大賽,該年級(jí)決定從沒有擔(dān)任班主任的5個(gè)語(yǔ)文老師(其中3個(gè)男老師2個(gè)女老師)中隨機(jī)抽取兩個(gè)老師對(duì)勝出的學(xué)生進(jìn)行培訓(xùn)、輔導(dǎo).請(qǐng)用樹狀圖或列表法求出抽取的兩個(gè)老師恰好都是男老師的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,放置的是一副斜邊相等的直角三角板,其中AB=BC,連接BD交公共的斜邊AC于O點(diǎn).
(1)證明:BD平分∠ADC;
(2)求∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】滿足下列條件的△ABC不是直角三角形的是()
A. BC=1,AC=2,AB=
B. BC=1,AC=2,AB=
C. BC:AC:AB=3:4:5
D. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
已知:如圖,在正方形ABCD中,邊AB=a1.
按照以下操作步驟,可以從該正方形開始,構(gòu)造一系列的正方形,它們之間的邊滿足一定的關(guān)系,并且一個(gè)比一個(gè)。
操作步驟 | 作法 | 由操作步驟推斷(僅選取部分結(jié)論) |
第一步 | 在第一個(gè)正方形ABCD的對(duì)角線AC上截取AE=a1,再作EF⊥AC于點(diǎn)E,EF與邊BC交于點(diǎn)F,記CE=a2 | (i)△EAF≌△BAF(判定依據(jù)是①); (ii)△CEF是等腰直角三角形; (iii)用含a1的式子表示a2為②: |
第二步 | 以CE為邊構(gòu)造第二個(gè)正方形CEFG; | |
第三步 | 在第二個(gè)正方形的對(duì)角線CF上截取FH=a2,再作IH⊥CF于點(diǎn)H,IH與邊CE交于點(diǎn)I,記CH=a3: | (iv)用只含a1的式子表示a3為③: |
第四步 | 以CH為邊構(gòu)造第三個(gè)正方形CHIJ | |
這個(gè)過程可以不斷進(jìn)行下去.若第n個(gè)正方形的邊長(zhǎng)為an,用只含a1的式子表示an為④ |
請(qǐng)解決以下問題:
(1)完成表格中的填空:
① ;② ;③ ;④ ;
(2)根據(jù)以上第三步、第四步的作法畫出第三個(gè)正方形CHIJ(不要求尺規(guī)作圖).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=60°,點(diǎn)D、E分別為邊BC、AC上的點(diǎn),連接DE,過點(diǎn)E作EF∥BC交AB于F,若BC=CE,CD=6,AE=8,∠EDB=2∠A,則BC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD垂直BC于點(diǎn)D,且AD=BC,BC上方有一動(dòng)點(diǎn)P滿足,則點(diǎn)P到B、C兩點(diǎn)距離之和最小時(shí),∠PBC的度數(shù)為( )
A.30°B.45°C.60°D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB的垂直平分線EF交BC于點(diǎn)E,交AB于點(diǎn)F,D是線段CE的中點(diǎn),AD⊥BC于點(diǎn)D.若∠B=36°,BC=8,則AB的長(zhǎng)為__.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com