【題目】閱讀下面材料,解答后面的問題.
解方程:-=0.
解:設y=,則原方程可化為y-=0,方程兩邊同時乘y,得y2-4=0,解得y1=2,y2=-2.
經檢驗,y1=2,y2=-2都是方程y-=0的解.
當y=2時,=2,解得x=-1;當y=-2時,=-2,解得x=.
經檢驗,x1=-1,x2=都是原分式方程的解.所以原分式方程的解為x1=-1,x2=.
上述這種解分式方程的方法稱為換元法.
問題:
(1)若在方程-=0中,設y=,則原方程可化為________________;
(2)若在方程-=0中,設y=,則原方程可化為________________;
(3)模仿上述換元法解方程:--1=0.
【答案】(1);(2);(3)x=-.
【解析】
(1)將所設的y代入原方程即可;
(2)將所設的y代入原方程即可;
(3)利用換元法解分式方程,設y=,將原方程化為y=0,求出y的值并檢驗是否為原方程的解,然后求解x的值即可.
(1)將y=代入原方程,則原方程化為=0;
(2)將y=代入方程,則原方程可化為y=0;
(3)原方程可化為-=0,設y=,則原方程可化為y-=0,
方程兩邊同時乘y,得y2-1=0,解得y1=1,y2=-1,
經檢驗,y1=1,y2=-1都是方程y-=0的解;
當y=1時,=1,該方程無解;當y=-1時,=-1,解得x=-,
經檢驗,x=-是原分式方程的解,
所以原分式方程的解為x=-.
科目:初中數學 來源: 題型:
【題目】把下列各數分別填入相應的集合中.
- ,π,3.14,- ,0,-5.123 45…, ,-.
(1)有理數集合:{ …};
(2)無理數集合:{ …};
(3)正實數集合:{ …};
(4)負實數集合:{ …}.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y1=a(x+2)2﹣3與y2= (x﹣3)2+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結論: ①無論x取何值,y2的值總是正數;
②a=1;
③當x=0時,y2﹣y1=4;
④2AB=3AC;
其中正確結論是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在小學,我們已經初步了解到,長方形的對邊平行且相等,每個角都是90°.如圖,長方形ABCD中,AD=9cm,AB=4cm,E為邊AD上一動點,從點D出發(fā),以1cm/s向終點A運動,同時動點P從點B出發(fā),以acm/s向終點C運動,運動的時間為ts.
(1)當t=3時,
①求線段CE的長;
②當EP平分∠AEC時,求a的值;
(2)若a=1,且△CEP是以CE為腰的等腰三角形,求t的值;
(3)連接DP,直接寫出點C與點E關于DP對稱時的a與t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AC與BD相交于點O,AB=AC,延長BC到點E,使CE=BC,連接AE,分別交BD、CD于點F、G.
(1)求證:△ADB≌△CEA;
(2)若BD=9,求AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知梯形ABCD,請使用無刻度直尺畫圖.
(1)在圖1中畫出一個與梯形ABCD面積相等,且以CD為邊的三角形;
(2)圖2中畫一個與梯形ABCD面積相等,且以AB為邊的平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是半圓O直徑,半徑OC⊥AB,連接AC,∠CAB的平分線AD分別交OC于點E,交 于點D,連接CD、OD,以下三個結論:①AC∥OD;②AC=2CD;③線段CD是CE與CO的比例中項,其中所有正確結論的序號是( )
A.①②
B.①③
C.②③
D.①②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點 的坐標為,以 A 為頂點的的兩邊始終與 軸交于 、兩點(在 左面),且.
(1)如圖,連接,當 時,試說明:.
(2)過點 作軸,垂足為,當時,將沿所在直線翻折,翻折后邊 交 軸于點 ,求點 的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com