【題目】解方程:(1)(x﹣3)2﹣9=0;(2)x2﹣2x=2x+1;(3)(x+1)(x﹣1)+2(x+3)=8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是等邊三角形ABC內(nèi)一點,將線段AD繞點A順時針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.
(1)求證:∠AEB=∠ADC;
(2)連接DE,若∠ADC=105°,求∠BED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊直角三角板,且∠C=90°,∠A=30°,現(xiàn)將圓心為點O的圓形紙片放置在三角板內(nèi)部,將圓形紙片沿著三角板的內(nèi)部邊緣滾動1周,回到起點位置時停止,若BC=7+2,圓形紙片的半徑為2,求圓心O運動的路徑長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是用鋼絲制作的一個幾何探究工具,其中△ABC內(nèi)接于⊙G,AB是⊙G的直徑,AB=6,AC=2.現(xiàn)將制作的幾何探究工具放在平面直角坐標(biāo)系中(如圖2),然后點A在射線OX上由點O開始向右滑動,點B在射線OY上也隨之向點O滑動(如圖3),當(dāng)點B滑動至與點O重合時運動結(jié)束. 在整個運動過程中,點C運動的路程是( 。
A. 4 B. 6 C. 4﹣2 D. 10﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線L:y=﹣x+2與x軸、y軸分別交于A、B兩點,在y軸上有一點N(0,4),動點M從A點以每秒1個單位的速度勻速沿x軸向左移動.
(1)點A的坐標(biāo):_____;點B的坐標(biāo):_____;
(2)求△NOM的面積S與M的移動時間t之間的函數(shù)關(guān)系式;
(3)在y軸右邊,當(dāng)t為何值時,△NOM≌△AOB,求出此時點M的坐標(biāo);
(4)在(3)的條件下,若點G是線段ON上一點,連結(jié)MG,△MGN沿MG折疊,點N恰好落在x軸上的點H處,求點G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:()﹣2﹣+(﹣4)0﹣cos45°.
【答案】1
【解析】試題分析:把原式的第一項根據(jù)負(fù)整數(shù)指數(shù)冪的意義化簡,第二項根據(jù)算術(shù)平方根的定義求出9的算術(shù)平方根,第三項根據(jù)零指數(shù)公式化簡,最后一項利用特殊角的三角函數(shù)值化簡,合并后即可求出值.
試題解析:原式=4﹣3+1﹣
=2﹣1
=1.
【題型】解答題
【結(jié)束】
16
【題目】《九章算術(shù)》“勾股”章有一題:“今有二人同所立,甲行率七,乙行率三.乙東行,甲南行十步而斜東北與乙會.問甲乙行各幾何”.大意是說,已知甲、乙二人同時從同一地
點出發(fā),甲的速度為7,乙的速度為3.乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇.那么相遇時,甲、乙各走了多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寫字是學(xué)生的一項基本功,為了了解某校學(xué)生的書寫情況,隨機(jī)對該校部分學(xué)生進(jìn)行測試,測試結(jié)果分為A,B,C,D四個等級.根據(jù)調(diào)查結(jié)果繪制了下列兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,回答以下問題:
(1)把條形統(tǒng)計圖補(bǔ)充完整;
(2)若該校共有2000名學(xué)生,估計該校書寫等級為“D級”的學(xué)生約有 人;
(3)隨機(jī)抽取了4名等級為“A級”的學(xué)生,其中有3名女生,1名男生,現(xiàn)從這4名學(xué)生中任意抽取2名,用列表或畫樹狀圖的方法,求抽到的兩名學(xué)生都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=9x2﹣6ax+a2﹣b
(1)當(dāng)b=﹣3時,二次函數(shù)的圖象經(jīng)過點(﹣1,4)
①求a的值;
②求當(dāng)a≤x≤b時,一次函數(shù)y=ax+b的最大值及最小值;
(2)若a≥3,b﹣1=2a,函數(shù)y=9x2﹣6ax+a2﹣b在﹣<x<c時的值恒大于或等于0,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列一組方程:;;;;它們的根有一定的規(guī)律,都是兩個連續(xù)的自然數(shù),我們稱這類一元二次方程為“連根一元二次方程”.
若也是“連根一元二次方程”,寫出k的值,并解這個一元二次方程;
請寫出第n個方程和它的根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com