【題目】如圖,分別是可活動的菱形和平行四邊形學具,已知平行四邊形較短的邊與菱形的邊長相等.

1)在一次數(shù)學活動中,某小組學生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,AF經過點C,連接DEAF于點M,觀察發(fā)現(xiàn):點MDE的中點.

下面是兩位學生有代表性的證明思路:

思路1:不需作輔助線,直接證三角形全等;

思路2:不證三角形全等,連接BDAF于點H.…

請參考上面的思路,證明點MDE的中點(只需用一種方法證明);

2)如圖2,在(1)的前提下,當∠ABE=135°時,延長AD、EF交于點N,求的值;

3)在(2)的條件下,若=kk為大于的常數(shù)),直接用含k的代數(shù)式表示的值.

【答案】1)證明見解析;(2;(3

【解析】試題分析:1)證法一,利用菱形性質得AB=CDABCD,利用平行四邊形的性質得AB=EF,ABEF,則CD=EF,CDEF,再根據(jù)平行線的性質得CDM=∠FEM,則可根據(jù)“AAS”判斷CDM≌△FEM,所以DM=EM;

證法二,利用菱形性質得DH=BH,利用平行四邊形的性質得AFBE,再根據(jù)平行線分線段成比例定理得到=1,所以DM=EM;

2)由CDM≌△FEM得到CM=FM,設AD=a,CM=b,則FM=bEF=AB=a,再證明四邊形ABCD為正方形得到AC=a,接著證明ANF為等腰直角三角形得到NF=a+b,則NE=NF+EF=2a+b,然后計算的值;

3)由于= ==k,則 =,然后表示出 ==,再把 =代入計算即可.

試題解析:解:(1)如圖1,證法一四邊形ABCD為菱形,AB=CDABCD,四邊形ABEF為平行四邊形,AB=EF,ABEF,CD=EF,CDEF,∴∠CDM=∠FEM,在CDMFEM,∵∠CMD=∠FMECDM=∠FEM,CD=EF∴△CDM≌△FEM,DM=EM,即點MDE的中點;

證法二:四邊形ABCD為菱形,DH=BH,四邊形ABEF為平行四邊形,AFBEHMBE, =1DM=EM,即點MDE的中點;

2∵△CDM≌△FEMCM=FM,設AD=aCM=b,∵∠ABE=135°∴∠BAF=45°,四邊形ABCD為菱形,∴∠NAF=45°四邊形ABCD為正方形,AC=AD=aABEF,∴∠AFN=BAF=45°,∴△ANF為等腰直角三角形,NF=AF=a+b+b=a+b,NE=NF+EF=a+b+a=2a+b, = =;

3= ==k=, =, == ==

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】用科學記數(shù)法表示:425000_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=-x+m的圖象和y軸交于點B,與正比例函數(shù)y=x圖象交于點P 2,n).

1)求mn的值;

2)求POB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】520000用科學記數(shù)法表示為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果店在兩周內,將標價為10元/斤的某種水果,經過兩次降價后的價格為8.1元/斤,并且兩次降價的百分率相同.

1)求該種水果每次降價的百分率;

2)從第一次降價的第1天算起,第x天(x為整數(shù))的售價、銷量及儲存和損耗費用的相關信息如表所示.已知該種水果的進價為4.1元/斤,設銷售該水果第x(天)的利潤為y(元),求yx1x15)之間的函數(shù)關系式,并求出第幾天時銷售利潤最大?

3)在(2)的條件下,若要使第15天的利潤比(2)中最大利潤最多少127.5元,則第15天在第14天的價格基礎上最多可降多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大源村在山上再造一個通城工作中,計劃植樹200畝,全村在完成植樹40畝后,黨的群眾路線教育實踐活動工作小組加入村民植樹活動,并且該活動小組植樹的速度是全村植樹速度的1.5倍,整個植樹過程共用了13天完成.

1)全村每天植樹多少畝?

2)如果全村植樹每天需2000元工錢,黨的群眾路線教育實踐活動工作小組是義務植樹,因此實際工錢比計劃節(jié)約多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列各式

x﹣1)(x+1=x2﹣1,

x﹣1)(x2+x+1=x3﹣1

x﹣1)(x3+x2+x+1=x4﹣1,

……

1)根據(jù)以上規(guī)律,則(x﹣1)(x6+x5+x4+x3+x2+x+1=   

2)你能否由此歸納出一般性規(guī)律:(x﹣1)(xn+xn1+…+x+1=   

3)根據(jù)以上規(guī)律求1+3+32+…+334+335的結果

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用配方法解下列方程:

(1)x2+2x-8=0 (2)x2+12x-15=0

(3)x2-4x=16 (4)x2=x+56

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AM∥BN,∠A=60°.點P是射線AM上一動點(與點A不重合),BC、BD分別平分∠ABP∠PBN,分別交射線AM于點CD

1)求∠CBD的度數(shù);

2)當點P運動時,∠APB∠ADB之間的數(shù)量關系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關系,并說明理由;若變化,請寫出變化規(guī)律.

3)當點P運動到使∠ACB=∠ABD時,∠ABC的度數(shù)是   

查看答案和解析>>

同步練習冊答案