【題目】如圖,平行四邊形,對角線交于點,點分別是的中點,連接交于,連接
(1)證明:四邊形是平行四邊形
(2)點是哪些線段的中點,寫出結(jié)論,并選擇一組給出證明.
【答案】(1)見解析;(2)G是線段OB的中點,也是EF的中點,證明見解析
【解析】
(1)根據(jù)三角形的中位線定理可得EF與AC的數(shù)量關(guān)系和位置關(guān)系,再由平行四邊形的性質(zhì)即可證得EF與CO的關(guān)系,進(jìn)一步即可證得結(jié)論;
(2)根據(jù)三角形中位線定理即可得出結(jié)論.
解:(1)證明:∵分別是中點,∴且,
∵是平行四邊形,∴,∴,
∴四邊形COEF是平行四邊形.
(2)G是線段OB的中點,也是EF的中點.
證明:∵,E為AB中點,∴G為OB中點.
∴FG、GE分別是△BCO、△BAO的中位線,
∴,
∵AO=CO,
∴,即G為EF的中點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1至圖3是將正方體截去一部分后得到的幾何體.
(1)根據(jù)要求填寫表格:
面數(shù)/f | 頂點數(shù)/v | 棱數(shù)/e | |
圖1 | _____ | _____ | ____ |
圖2 | _____ | _____ | _____ |
圖3 | ___ | _____ | ____ |
(2)猜想f,v,e三個數(shù)量間的關(guān)系.
(3)根據(jù)猜想計算,若一個幾何體的頂點有2 019個,棱有4 035條,試求出它的面數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:求值1+2+22+23+24+…+22014
解:設(shè)S=1+2+22+23+24+…+22014 ①,將等式兩邊同時乘以2得
2S=2+22+23+24+…+22014+22015 ②
將②﹣①得:S=22015﹣1,即S=1+2+22+23+24+…+22014=22015﹣1
請你仿照此法計算:
(1)1+3+32+33+…+3100
(2)1++++…+.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將下列各數(shù)填在相應(yīng)的集合里:
-3.8,-10,4.3,-|-|,42,0,-(-).0.275,
整數(shù)集合:{ …};
分?jǐn)?shù)集合:{ …};
正數(shù)集合:{ …};
負(fù)數(shù)集合:{ …};
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)填入相應(yīng)的集合內(nèi):
4.2 , 50% , 0 , , , 2.122222…, 3.01001…,, ,
正數(shù)集合:{ };
分?jǐn)?shù)集合:{ };
負(fù)有理數(shù)集合:{ };
無理數(shù)集合:{ }.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①內(nèi)錯角相等;②對頂角相等;③三角形的一個外角大于任何一個內(nèi)角;④若三條線段、、滿足,則三條線段、、一定能組成三角形其中正確的個數(shù)是( )
A. 1個B. 2個C. 3個D. 4個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=9,∠BOC=50°,OE⊥AC,垂足為E.
(1)求OE的長.
(2)求劣弧AC的長(結(jié)果精確到0.1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月23日是“世界讀書日”,學(xué)校開展“讓書香溢滿校園”讀書活動,以提升青少年的閱讀興趣,九年級(1)班數(shù)學(xué)活動小組對本年級600名學(xué)生每天閱讀時間進(jìn)行了統(tǒng)計,根據(jù)所得數(shù)據(jù)繪制了兩幅不完整統(tǒng)計圖(每組包括最小值不包括最大值).九年級(1)班每天閱讀時間在0.5小時以內(nèi)的學(xué)生占全班人數(shù)的8%.根據(jù)統(tǒng)計圖解答下列問題:
(1)九年級(1)班有 名學(xué)生;
(2)補(bǔ)全直方圖;
(3)除九年級(1)班外,九年級其他班級每天閱讀時間在1~1.5小時的學(xué)生有165人,請你補(bǔ)全扇形統(tǒng)計圖;
(4)求該年級每天閱讀時間不少于1小時的學(xué)生有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AE、DE分別平分∠BAD、∠ADC,E點在BC上.
(1)求證:BC=2AB;
(2)若AB=3cm,∠B=60°,一動點F以1cm/s的速度從A點出發(fā),沿線段AD運動,CF交DE于G,當(dāng)CF∥AE時:
①求點F的運動時間t的值;②求線段AG的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com