【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=45°時(shí),求∠DEF的度數(shù).
【答案】(1)見解析;(2)∠DEF=67.5°.
【解析】
(1)由AB=AC,∠ABC=∠ACB,BE=CF,BD=CE.利用邊角邊定理證明△DBE≌△CEF,然后即可求證△DEF是等腰三角形.
(2)根據(jù)∠A=45°可求出∠ABC=∠ACB=67.5°根據(jù)△DBE≌△CEF,利用三角形內(nèi)角和定理即可求出∠DEF的度數(shù).
∵AB=AC,
∴∠ABC=∠ACB,
在△DBE和△CEF中
,
∴△DBE≌△CEF,
∴DE=EF,
∴△DEF是等腰三角形;
(2)∵△DBE≌△CEF,
∴∠1=∠3,∠2=∠4,
∵∠A+∠B+∠C=180°,
∴∠B=(180°﹣45°)=67.5°
∴∠1+∠2=112.5°
∴∠3+∠2=112.5°
∴∠DEF=67.5°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)住在同一小區(qū),學(xué)校與小區(qū)相距2700米.一天甲從小區(qū)步行出發(fā)去學(xué)校,12分鐘后乙也出發(fā),乙先騎公交自行車,途經(jīng)學(xué)校又騎行一段路到達(dá)還車點(diǎn)后,立即步行走回學(xué)校.已知步行速度甲比乙每分鐘快5米,圖中的折線表示甲、乙兩人之間的距離y(米)與甲步行時(shí)間x(分鐘)的函數(shù)關(guān)系圖象.則( )
A.乙騎自行車的速度是180米/分B.乙到還車點(diǎn)時(shí),甲,乙兩人相距850米
C.自行車還車點(diǎn)距離學(xué)校300米D.乙到學(xué)校時(shí),甲距離學(xué)校200米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,點(diǎn)從開始沿折線以的速度運(yùn)動,點(diǎn)從開始沿邊以的速度移動,如果點(diǎn)、分別從、同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)時(shí),另一點(diǎn)也隨之停止運(yùn)動,設(shè)運(yùn)動時(shí)間為,當(dāng)________時(shí),四邊形也為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,該小組發(fā)現(xiàn)8米高旗桿DE的影子EF落在了包含一圓弧型小橋在內(nèi)的路上,于是他們開展了測算小橋所在圖的半徑的活動。小剛身高1.6米,測得其影長為2.4米,同時(shí)測得EG的長為3米,HF的長為1米,測得拱高(弧GH的中點(diǎn)到弦GH的距離,即MN的長)為2米,求小橋所在圓的半徑。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,CD是AB邊上的高,若.
(1)求CD的長.
(2)動點(diǎn)P在邊AB上從點(diǎn)A出發(fā)向點(diǎn)B運(yùn)動,速度為1個(gè)單位/秒;動點(diǎn)Q在邊AC上從點(diǎn)A出發(fā)向點(diǎn)C運(yùn)動,速度為v個(gè)單位秒,設(shè)運(yùn)動的時(shí)間為,當(dāng)點(diǎn)Q到點(diǎn)C時(shí),兩個(gè)點(diǎn)都停止運(yùn)動.
①若當(dāng)時(shí),,求t的值.
②若在運(yùn)動過程中存在某一時(shí)刻,使成立,求v關(guān)于t的函數(shù)表達(dá)式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工藝美術(shù)中,常需設(shè)計(jì)對稱圖案.在如圖的正方形網(wǎng)格中,點(diǎn),的坐標(biāo)分別為,.請?jiān)趫D中再找一個(gè)格點(diǎn),使它與已知的個(gè)格點(diǎn)組成軸對稱圖形,則點(diǎn)的坐標(biāo)為________(如果滿足條件的點(diǎn)不止一個(gè),請將它們的坐標(biāo)都寫出來).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,市防汛指揮部決定對某水庫的水壩進(jìn)行加高加固,設(shè)計(jì)師提供的方案是:水壩加高1米(EF=1米),背水坡AF的坡度i=1∶1,已知AB=3米,∠ABE=120°,求水壩原來的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B(0,﹣2).
(1)求直線AB的解析式;
(2)若直線AB上的點(diǎn)C在第一象限,且S△BOC=2,求經(jīng)過點(diǎn)C的反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線,與和分別相切于點(diǎn)和點(diǎn).點(diǎn)和點(diǎn)分別是和上的動點(diǎn),沿和平移.的半徑為,.下列結(jié)論錯(cuò)誤的是( )
A. B. 若與相切,則
C. 若,則與相切 D. 和的距離為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com