【題目】如圖,將等腰三角形紙片沿圖中虛線剪成四塊圖形,用這四塊圖形進(jìn)行拼接,恰能拼成一個沒有縫隙的正方形,則正方形的邊長與等腰三角形的底邊長的比為( )
A.B.C.D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店購進(jìn)一批優(yōu)質(zhì)晚熟芒果,進(jìn)價為10元/千克,售價不低于15元/千克,且不超過40元/千克,根據(jù)銷售情況發(fā)現(xiàn)該芒果在一天內(nèi)的銷售量(千克)與該天的售價(元/千克)之間滿足如下表所示的一次函數(shù)關(guān)系:
(1)寫出銷售量與售價之間的函數(shù)關(guān)系式;
(2)設(shè)某天銷售這種芒果獲利元,寫出與售價之間的函數(shù)關(guān)系式,并求出當(dāng)售價為多少元時,當(dāng)天的獲利最大,最大利潤是多少?
售價(元/千克) | … | 25 | 24.5 | 22 | … |
銷售量(千克) | … | 35 | 35.5 | 38 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC,∠ABC=90°,頂點(diǎn)A在第一象限,B、C在x軸的正半軸上(C在B的右側(cè)),BC=3,AB=4,若雙曲線交邊AB于點(diǎn)E,交邊AC于中點(diǎn)D.
(1)若OB=2,求k;
(2)若AE=, 求直線AC的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,A(a,0),B(0,b),a,b滿足,將線段AB平移得到CD,A,B的對應(yīng)點(diǎn)分別為C,D,其中點(diǎn)C在y軸負(fù)半軸上.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)如圖1,連AD交BC于點(diǎn)E,若點(diǎn)E在y軸正半軸上,求的值;
(3)如圖2,點(diǎn)F,G分別在CD,BD的延長線上,連結(jié)FG,∠BAC的角平分線與∠DFG的角平分線交于點(diǎn)H,求∠G與∠H之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,NM與⊙O相切于點(diǎn)M,與AB的延長線交于點(diǎn)N,MH⊥AB于點(diǎn)H.
(1)求證:∠1=∠2;
(2)若∠N=30°,BN=5,求⊙O的半徑;
(3)在(2)的條件下,求線段BN、MN及劣弧BM圍成的陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌牛奶供應(yīng)商提供A,B,C,D,E五種不同口味的牛奶供學(xué)生選擇.某校為了了解學(xué)生對不同口味的牛奶的喜好,對全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖所示兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息,解答下列問題:
(1)本次調(diào)查的學(xué)生有多少名?
(2)補(bǔ)全條形統(tǒng)計圖,并計算出喜好C口味牛奶的學(xué)生人數(shù)對應(yīng)的扇形圓心角的度數(shù).
(3)該校共有1 200名學(xué)生訂了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂牛奶的學(xué)生配送一盒牛奶,要使學(xué)生每天都能喝到自己喜好的品味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,B口味牛奶要比C口味牛奶約多送多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有若干個僅顏色不同的紅球和黑球,現(xiàn)往一個不透明的袋子里裝進(jìn)2個紅球和2個黑球.
(1)隨機(jī)摸出一個球是黑球的概率為 ;若先從袋子里取出m個紅球(不放回),再從袋子里隨機(jī)摸出一個球,將“摸到黑球”記為事件A.若事件A為必然事件,則m= ;
(2)若從袋子里一次摸出兩個球,用列表法或畫樹狀圖法列出所有等可能結(jié)果,并求摸出的兩球顏色不同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在正方形ABCD中,對角線AC與BD交于點(diǎn)O,點(diǎn)M在線段OD上,聯(lián)結(jié)AM并延長交邊DC于點(diǎn)E,點(diǎn)N在線段OC上,且ON=OM,聯(lián)結(jié)DN與線段AE交于點(diǎn)H,聯(lián)結(jié)EN、MN.
(1)如果EN∥BD,求證:四邊形DMNE是菱形;
(2)如果EN⊥DC,求證:AN2=NCAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將2019個邊長為1的正方形按如圖所示的方式排列,點(diǎn)A,A1,A2,A3…A2019和點(diǎn)M,M1,M2…M2018是正方形的頂點(diǎn),連接AM1,AM2,AM3…AM2018分別交正方形的邊A1M,A2M1,A3M2…A2018M2017于點(diǎn)N1,N2,N3…N2018,四邊形M1N1A1A2的面積是S1,四邊形M2N2A2A3的面積是S2,…,則S2018為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com