【題目】如圖,已知:AB為⊙O直徑,PQ與⊙O交于點(diǎn)C,AD⊥PQ于點(diǎn)D,且AC為∠DAB的平分線,BE⊥PQ于點(diǎn)E.
(1)求證:PQ與⊙O相切;
(2)求證:點(diǎn)C是DE的中點(diǎn).
【答案】(1)見解析;(2)見解析.
【解析】
(1)連接OC,由角平分線的性質(zhì)和等腰三角形的性質(zhì)可得∠DAC=∠ACO,可得AD∥OC,由平行線的性質(zhì)可得OC⊥PQ,可得結(jié)論;
(2)由平行線分線段成比例可得DC=CE,即點(diǎn)C是DE的中點(diǎn).
證明:(1)連接OC,
∵AC平分∠DAB
∴∠DAC=∠CAO,
∵OA=OC,
∴∠OAC=∠OCA
∴∠DAC=∠ACO
∴AD∥OC,且AD⊥PQ
∴OC⊥PQ,且OC為半徑
∴PQ與⊙O相切
(2)∵OC⊥PQ,AD⊥PQ,BE⊥PQ
∴OC∥AD∥BE
∴
∴DC=CE
∴點(diǎn)C是DE的中點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形ABCD中,對角線AC與BD相交于點(diǎn)O,AB=13,BD=24,在菱形ABCD的外部以AB為邊作等邊三角形 ABE.點(diǎn)F是對角線BD上一動點(diǎn)(點(diǎn)F不與點(diǎn)B重合),將線段AF繞點(diǎn)A順時針方向旋轉(zhuǎn)60°得到線段AM,連接FM.
(1)求AO的長;
(2)如圖2,當(dāng)點(diǎn)F在線段BO上,且點(diǎn)M,F(xiàn),C三點(diǎn)在同一條直線上時,求證:AC=AM;
(3)連接EM,若△AEM的面積為40,請直接寫出△AFM的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線L:y=ax2+bx﹣1.5(a>0)與x軸交于點(diǎn)A(-1,0)和點(diǎn)B,頂點(diǎn)為M,對稱軸為直線l:x=1.
(1)直接寫出點(diǎn)B的坐標(biāo)及一元二次方程ax2+bx﹣1.5=0的解.
(2)求拋物線L的解析式及頂點(diǎn)M的坐標(biāo).
(3)如圖2,設(shè)點(diǎn)P是拋物線L上的一個動點(diǎn),將拋物線L平移.使它的頂點(diǎn)移至點(diǎn)P,得到新拋物線L′,L′與直線l相交于點(diǎn)N.設(shè)點(diǎn)P的橫坐標(biāo)為m
①當(dāng)m=5時,PM與PN有怎樣的數(shù)量關(guān)系?請說明理由.
②當(dāng)m為大于1的任意實數(shù)時,①中的關(guān)系式還成立嗎?為什么?
③是否存在這樣的點(diǎn)P,使△PMN為等邊三角形?若存在.請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E是CD的中點(diǎn),點(diǎn)F是BC上的一點(diǎn),且BF=3CF,連接AE、AF、EF,下列結(jié)論:①△ADE∽△ECF,②∠DAE=∠EAF,③AE2=ADAF,④S△AEF=5S△ECF,其中正確結(jié)論的個數(shù)是( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為測量學(xué)校旗桿AB的高度,小明從旗桿正前方6米處的點(diǎn)C出發(fā),沿坡度為i=1:的斜坡CD前進(jìn)2米到達(dá)點(diǎn)D,在點(diǎn)D處放置測角儀DE,測得旗桿頂部A的仰角為30°,量得測角儀DE的高為1.5米.A、B、C、D、E在同一平面內(nèi),且旗桿和測角儀都與地面垂直.
(1)求點(diǎn)D的鉛垂高度(結(jié)果保留根號);
(2)求旗桿AB的高度(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從D,E兩處測得路燈B的仰角分別為α和β,且tanα=6,tanβ=,求燈桿AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,某校開展“經(jīng)典誦讀”比賽活動,誦讀材料有《論語》、《大學(xué)》、《中庸》(依次用字母A,B,C表示這三個材料),將A,B,C分別寫在3張完全相同的不透明卡片的正面上,背面朝上洗勻后放在桌面上,比賽時小禮先從中隨機(jī)抽取一張卡片,記下內(nèi)容后放回,洗勻后,再由小智從中隨機(jī)抽取一張卡片,他倆按各自抽取的內(nèi)容進(jìn)行誦讀比賽.
(1)小禮誦讀《論語》的概率是 ;(直接寫出答案)
(2)請用列表或畫樹狀圖的方法求他倆誦讀兩個不同材料的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線不經(jīng)過第四象限,且與軸,軸分別交于兩點(diǎn),點(diǎn)為的中點(diǎn),點(diǎn)在線段上,其坐標(biāo)為,連結(jié),,若,那么的值為( )
A. B. 4C. 5D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABC的頂點(diǎn)A在拋物線y=x2上,頂點(diǎn)B,C在x軸的正半軸上,且點(diǎn)B的坐標(biāo)為(1,0)
(1)求點(diǎn)D坐標(biāo);
(2)將拋物線y=x2適當(dāng)平移,使得平移后的拋物線同時經(jīng)過點(diǎn)B與點(diǎn)D,求平移后拋物線解析式,并說明你是如何平移的.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com