【題目】如圖,已知:在四邊形ABFC中,∠ACB=90°,BC的垂直平分線EFBC于點D,交AB于點E,且CF=AE;

1)試判斷四邊形BECF是什么四邊形?并說明理由.

2)當(dāng)∠A的大小滿足什么條件時,四邊形BECF是正方形?請回答并證明你的結(jié)論.

【答案】1)四邊形BECF是菱形.證明見解析;(2)當(dāng)∠A=45°時,菱形BECF是正方形.證明見解析.

【解析】

1)根據(jù)中垂線的性質(zhì):中垂線上的點到線段兩個端點的距離相等,有BEEC,BFFC,又因為CFAE,可通過求證EC=AEBEECBFFC,根據(jù)四邊相等的四邊形是菱形,證明四邊形BECF是菱形;

2)當(dāng)∠A45°時,可得∠EBF90°,即可得到菱形BECF是正方形.

1)四邊形BECF是菱形.

證明:如圖,∵BC的垂直平分線為EF,

BF=FC,BE=EC,

∴∠1=3

∵∠ACB=90°,

∴∠1+2=90°,∠3+A=90°,

∴∠2=A,

EC=AE,

又∵CF=AE,BE=EC

BE=EC=CF=BF,

∴四邊形BECF是菱形;

2)當(dāng)∠A=45°時,菱形BECF是正方形.

證明:∵∠A=45°,∠ACB=90°,
∴∠3=45°
∴∠EBF=23=90°,
∴菱形BECF是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+cba0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:①該拋物線的對稱軸在y軸左側(cè);②關(guān)于x的方程ax2+bx+c=0無實數(shù)根;③a-b+c≥0;④的最小值為3,其中正確結(jié)論的個數(shù)是( 。

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,D、E分別是AB、AC邊上的點,點FBC的延長線上,DEBC,若∠A48°,∠154°,則下列正確的是( 。

A. 248°B. 254°C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某海盜船以20海里/小時的速度在某海域執(zhí)行巡航任務(wù),當(dāng)海監(jiān)船由西向東航行至A處使,測得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時到達(dá)B處,測得島嶼P在其北偏西30°方向,保持航向不變又航行2小時到達(dá)C處,求出此時海監(jiān)船與島嶼P之間的距離(即PC的長,結(jié)果精確到0.1)(參考數(shù)據(jù):≈1.732,≈1.414

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點C落在DP(PAB中點)所在的直線上,得到經(jīng)過點D的折痕DE,則∠DEC的大小為( )

A. 78° B. 45° C. 60° D. 75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形的邊長為6,點,分別在上,相交于點,點的中點,連接,則的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點,對稱軸為直線,,下列結(jié)論:①;②9a+3b+c=0;③若點,點是此函數(shù)圖象上的兩點,則;④.其中正確的個數(shù)(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A、B兩點,點A在點B左側(cè),點B的坐標(biāo)為(1,0),C(0,-3)

(1) 求拋物線的解析式;

(2) 若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.

(3) 若點Ex軸上,點P在拋物線上,是否存在以AC、E、P為頂點且以AC為一邊的平行四邊形?若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點FDE的延長線上,∠BFE=90°,連接AF、CF,CFAB交于G.有以下結(jié)論:

①AE=BC

②AF=CF

③BF2=FGFC

④EGAE=BGAB

其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案