【題目】如圖,已知拋物線經(jīng)過原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線y=x﹣2交于B,C兩點(diǎn).
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)求證:△ABC是直角三角形;
(3)若點(diǎn)N為x軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1),C(﹣1,﹣3);(2)證明見解析;(3)(,0)或(,0)或(﹣1,0)或(5,0).
【解析】
試題分析:(1)可設(shè)頂點(diǎn)式,把原點(diǎn)坐標(biāo)代入可求得拋物線解析式,聯(lián)立直線與拋物線解析式,可求得C點(diǎn)坐標(biāo);
(2)分別過A、C兩點(diǎn)作x軸的垂線,交x軸于點(diǎn)D、E兩點(diǎn),結(jié)合A、B、C三點(diǎn)的坐標(biāo)可求得∠ABO=∠CBO=45°,可證得結(jié)論;
(3)設(shè)出N點(diǎn)坐標(biāo),可表示出M點(diǎn)坐標(biāo),從而可表示出MN、ON的長度,當(dāng)△MON和△ABC相似時(shí),利用三角形相似的性質(zhì)可得或,可求得N點(diǎn)的坐標(biāo).
試題解析:
(1)∵頂點(diǎn)坐標(biāo)為(1,1),∴設(shè)拋物線解析式為,又拋物線過原點(diǎn),∴,解得a=﹣1,∴拋物線解析式為,即,聯(lián)立拋物線和直線解析式可得:,解得:或,∴B(2,0),C(﹣1,﹣3);
(2)如圖,分別過A、C兩點(diǎn)作x軸的垂線,交x軸于點(diǎn)D、E兩點(diǎn),則AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;
(3)假設(shè)存在滿足條件的點(diǎn)N,設(shè)N(x,0),則M(x,),∴ON=|x|,MN=,由(2)在Rt△ABD和Rt△CEB中,可分別求得AB=,BC=,∵M(jìn)N⊥x軸于點(diǎn)N
∴∠ABC=∠MNO=90°,∴當(dāng)△ABC和△MNO相似時(shí),有或;
①當(dāng)時(shí),則有,即,∵當(dāng)x=0時(shí)M、O、N不能構(gòu)成三角形,∴x≠0,∴,即,解得x=或x=,此時(shí)N點(diǎn)坐標(biāo)為(,0)或(,0);
②當(dāng)時(shí),則有,即,∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,此時(shí)N點(diǎn)坐標(biāo)為(﹣1,0)或(5,0);
綜上可知存在滿足條件的N點(diǎn),其坐標(biāo)為(,0)或(,0)或(﹣1,0)或(5,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】不等式﹣3x+6>0的正整數(shù)解有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人以相同路線前往距離單位10km的培訓(xùn)中心參加學(xué)習(xí).圖中l(wèi)甲、l乙分別表示甲、乙兩人前往目的地所走的路程S(km)隨時(shí)間t(分)變化的函數(shù)圖象.以下說法:①乙比甲提前12分鐘到達(dá);②甲的平均速度為15千米/小時(shí);③乙走了8km后遇到甲;④乙出發(fā)6分鐘后追上甲.其中正確的有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形紙片,把紙片ABCD折疊,使點(diǎn)B恰好落在邊DC的中點(diǎn)E,折痕為AF,已知CD=8cm.求:
(1)AD的長;
(2)△ABF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的解析式為y=﹣2x+2,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A(4,0),B(0,﹣1),兩直線交于點(diǎn)C.
(1)點(diǎn)D的坐標(biāo)為;
(2)求直線l2的表達(dá)式;
(3)求△ADC的面積;
(4)若有過點(diǎn)C的直線CE把△ADC的面積分為2:1兩部分,請(qǐng)直接寫出直線CE的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】上海世博會(huì)的某紀(jì)念品原價(jià)168元,連續(xù)兩次降價(jià)a%后售價(jià)為128元.下列所列方程中正確的( )
A.168(1+a%)=128B.168(1-a%)=128
C.168(1-2a%)=128D.168(1+2a%)=128
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,﹣3),動(dòng)點(diǎn)P在拋物線上.
(1)b= ,c= ,點(diǎn)B的坐標(biāo)為 ;(直接填寫結(jié)果)
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)過動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)在一次用頻率去估計(jì)概率的實(shí)驗(yàn)中,統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率繪出的統(tǒng)計(jì)圖如圖所示,符合這一結(jié)果的實(shí)驗(yàn)可能是( )
A.擲一枚正六面體的骰子,出現(xiàn)1點(diǎn)的概率
B.任意寫一個(gè)正整數(shù),它能被3整除的概率
C.拋一枚硬幣,出現(xiàn)正面的概率
D.從一個(gè)裝有2個(gè)白球和1個(gè)紅球的袋子中任取一球,取到白球的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)xOy中,已知點(diǎn)A(6,0),點(diǎn)B(0,6),動(dòng)點(diǎn)C在以半徑為3的⊙O上,連接OC,過O點(diǎn)作OD⊥OC,OD與⊙O相交于點(diǎn)D(其中點(diǎn)C、O、D按逆時(shí)針方向排列),連接AB.
(1)當(dāng)OC∥AB時(shí),∠BOC的度數(shù)為 ;
(2)連接AC,BC,在點(diǎn)C在⊙O運(yùn)動(dòng)過程中,△ABC的面積是否存在最大值?并求出△ABC的最大值;
(3)直接寫出在(2)的條件下D點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com