【題目】如圖,在中,,垂足為,直線上一動點(不與點重合),在的右側(cè)作,使得,連接

1)求證:;

2)當在線段上時

求證:

, ;

3)當CEAB時,若△ABD中最小角為20°,試探究∠ADB的度數(shù)(直接寫出結(jié)果)

【答案】1)證明見解析;(2)①證明見解析;②證明見解析;(320°40°100°

【解析】

1)證明RtAHBRtAHCHL),即可解決問題.

2)①根據(jù)SAS即可證明;

D運動到BC中點(H點)時,ACDE;利用等腰三角形的三線合一即可證明;

3)分三種情形分別求解即可解決問題;

1)∵AB=ACAHBC,

∴∠AHB=AHC=90°

RtAHBRtACH中,

,

RtAHBRtAHCHL),

∴∠ABC=ACB

2)①如圖1中,

∵∠DAE=BAC,

∴∠BAD=CAE

BADCAE中,

∴△BAD≌△CAE

D運動到BC中點(H點)時,ACDE;

理由:如圖2中,∵AB=AC,AHBC,

∴∠BAH=CAH

∵∠BAH=CAE,

∴∠CAH=CAE,

AH=AE,

ACDE

3)∠ADB的度數(shù)為20°40°100°

理由:①如圖3中,當點DCB的延長線上時,

CEAB,

∴∠BAE=AEC,∠BCE=ABC

∵△DAB≌△EAC,

∴∠ADB=AEC,∠ABD=ACE,

∴∠BAC=BAE+EAC=AEC+EAC=180°-ACE=180°-ABD=ABC=ACB,

∴△ABC是等邊三角形,

∵△ABD中的最小角是∠BAD=20°,則∠ADB=ABC-BAD=40°

②當點D在線段BC上時,最小角只能是∠DAB=20°,此時∠ADB=180°-20°-60°=100°

③當點DBC 延長線上時,最小角只能是∠ADB=20°

綜上所述,滿足條件的∠ABD的值為20°40°100°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC是等邊三角形,點D是直線AB上一點,延長CB到點E,使BEAD,連接DEDC,

1)若點D在線段AB上,且AB6AD2(如圖①),求證:DEDC;并求出此時CD的長;

2)若點D在線段AB的延長線上,(如圖②),此時是否仍有DEDC?請證明你的結(jié)論;

3)在(2)的條件下,連接AE,若,求CDAE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,AB為半圓的直徑,O為圓心,C為圓弧上一點,AD垂直于過C點的切線,垂足為D,AB的延長線交直線CD于點E.

(1)求證:AC平分∠DAB;

(2)若AB=4,B為OE的中點,CF⊥AB,垂足為點F,求CF的長;

(3)如圖②,連接OD交AC于點G,若,求sinE的值.

【答案】(1)證明見解析;(2)CF=;(3) sinE=.

【解析】分析:(1)連接OC,由平行線的判定定理、性質(zhì)以及三角形中的等角對等邊的原理即可求證。(2)由(1)中結(jié)論,利用特殊角的三角函數(shù)值可求出∠E=30CF的長度。(3)連接OC,即可證得△OCG∽△DAG,△OCE∽△DAE,根據(jù)相似三角形的對應邊成比例,可得EOAO的比例關(guān)系,又因為OC=OA,所以在RT△OCE中由三角函數(shù)的定義即可求解。

本題解析:(1)連接OC,如圖①.∵OC切半圓O于C,∴OC⊥DC,又AD⊥CD.∴OC∥AD.∴∠OCA=∠DAC.∵OC=OA,∴∠OAC=∠ACO.∴∠DAC=∠CAO,即AC平分∠DAB.

(2)在Rt△OCE中,∵OC=OB=OE,∴∠E=30°.

∴在Rt△OCF中,CF=OC·sin60°=2×.

(3)連接OC,如圖②.∵CO∥AD,∴△CGO∽△AGD.∴.不妨設(shè)CO=AO=3k,則AD=4k.又△COE∽△DAE,∴.∴EO=9k.在Rt△COE中,sinE=.

型】解答
結(jié)束】
25

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標系中,且OB=3.

(1)若某反比例函數(shù)的圖象的一個分支恰好經(jīng)過點A,求這個反比例函數(shù)的解析式;

(2)若把含30°角的直角三角板繞點O按順時針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店購進45A商品和20B商品共用了800元,購進60A商品和35B商品共用了1100元.

1A、B兩種商品的單價分別是多少元?

2)已知該商店購進B商品的件數(shù)比購進A商品件數(shù)的2倍少4件,如果需要購進A、B兩種商品的總件數(shù)不少于32件,且該商店購進A、B兩種商品的總費用不超過296元,那么該商店有幾種購進方案?并寫出所有可能的購進方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】作圖題:如圖,在平面直角坐標系中,ABC的三個頂點坐標分別為A(﹣2,1),B(﹣1,4),C(﹣3,2).

(1)畫出ABC關(guān)于y軸對稱的圖形A1B1C1,并直接寫出C1點坐標;

(2)以原點O為位似中心,位似比為1:2,在y軸的左側(cè),畫出ABC放大后的圖形A2B2C2,并直接寫出C2點坐標;

(3)如果點D(a,b)在線段AB上,請直接寫出經(jīng)過(2)的變化后D的對應點D2的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,ADBC,AD=6cm,CD=8cm,BC=BD=10cm,點P由B出發(fā)沿BD方向勻速運動,速度為

1cm/s;同時,線段EF由DC出發(fā)沿DA方向勻速運動,速度為1cm/s,交BD于Q,連接PE.若設(shè)運動時間為t(s)(0<t<5).解答下列問題:

(1)當t為何值時,PEAB?

(2)是否存在某一時刻t,使SDEQ=?若存在,求出此時t的值;若不存在,說明理由.

(3)如圖2連接PF,在上述運動過程中,五邊形PFCDE的面積是否發(fā)生變化?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC

重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EBC上一動點,將△ABE沿AE折疊后得到△AFE,點F在矩形ABCD內(nèi)部,延長AFCD于點G,AB=3AD=4

1)如圖,當∠DAG=30° 時,求BE的長;

2)如圖,當點EBC的中點時,求線段GC的長;

3)如圖,點E在運動過程中,當△CFE的周長最小時,直接寫出BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每年農(nóng)歷五月初五,是中國民間的傳統(tǒng)節(jié)日——端午節(jié).它始于我國的春秋戰(zhàn)國時期,已列為世界非物質(zhì)文化遺產(chǎn).時至今日,端午節(jié)在我國仍是一個十分盛行的節(jié)日.今年端午節(jié),某地甲、乙兩家超市為吸引更多的顧客,開展促銷活動,對某種質(zhì)量和售價相同的粽子分別推出了不同的優(yōu)惠方案.甲超市的方案是:購買該種粽子超過80元后,超出80元的部分按九折收費;乙超市的方案是:購買該種粽子超過120元后,超出120元的部分按八折收費.請根據(jù)顧客購買粽子的金額,選擇到哪家超市購買粽子劃算?

查看答案和解析>>

同步練習冊答案