【題目】如圖,一艘油輪在海中航行,在A點(diǎn)看到小島B在A的北偏東25°方向距離60海里處,油輪沿北偏東70°方向航行到C處,看到小島B在C的北偏西50°方向,則油輪從A航行到C處的距離是( )海里.(結(jié)果保留整數(shù))(參考數(shù)據(jù):≈1.41,≈1.74,≈2.45)
A.66.8B.67C.115.8D.116
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AB=DC,AD=3cm,BC=7cm,∠B=60°,P為BC邊上一點(diǎn)(不與B,C重合),連接AP,過P點(diǎn)作PE交DC于E,使得∠APE=∠B.
(1)求證:△ABP∽△PCE;
(2)求AB的長;
(3)在邊BC上是否存在一點(diǎn)P,使得DE:EC=5:3?如果存在,求BP的長;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+2x+3與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C.
(1)如圖1,點(diǎn)P,Q都在直線BC上方的拋物線上,且點(diǎn)P的橫坐標(biāo)比點(diǎn)Q的橫坐標(biāo)小1,直線PQ與x軸交于點(diǎn)D,過點(diǎn)P,Q作直線BC的垂線,垂足分別為點(diǎn)E,F.當(dāng)PE+QF的值最大時(shí),將四邊形PEFQ沿射線PQ方向平移,記平移過程中的四邊形PEFQ為P1E1F1Q1,連接CP1,P1F1,求CP1+P1F1+Q1D的最小值,并求出對應(yīng)的點(diǎn)Q1的坐標(biāo).
(2)如圖2,對于滿足(1)中條件的點(diǎn)Q1,將線段AQ1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得線段A1Q2,點(diǎn)M是拋物線對稱軸上一點(diǎn),點(diǎn)N是坐標(biāo)平面內(nèi)一點(diǎn),點(diǎn)N1是點(diǎn)N關(guān)于直線A1Q2的對稱點(diǎn),若以點(diǎn)A1,Q1,M,N1為頂點(diǎn)的四邊形是一個(gè)矩形,請直接寫出所有符合條件的點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長城汽車銷售公司5月份銷售某種型號汽車,當(dāng)月該型號汽車的進(jìn)價(jià)為30萬元/輛,若當(dāng)月銷售量超過5輛時(shí),每多售出1輛,所有售出的汽車進(jìn)價(jià)均降低0.1萬元/輛.根據(jù)市場調(diào)查,月銷售量不會(huì)突破30臺(tái).
(1)設(shè)當(dāng)月該型號汽車的銷售量為x輛(x≤30,且x為正整數(shù)),實(shí)際進(jìn)價(jià)為y萬元/輛,求y與x的函數(shù)關(guān)系式;
(2)已知該型號汽車的銷售價(jià)為32萬元/輛,公司計(jì)劃當(dāng)月銷售利潤45萬元,那么該月需售出多少輛汽車?(注:銷售利潤=銷售價(jià)﹣進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)接于以AB為直徑的⊙O,過點(diǎn)C作⊙O的切線交BA的延長線于點(diǎn)D,且DA∶AB=1∶2.
(1)求∠CDB的度數(shù);
(2)在切線DC上截取CE=CD,連接EB,判斷直線EB與⊙O的位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級數(shù)學(xué)興趣小組為了測得該校地下停車場的限高CD,在課外活動(dòng)時(shí)間測得下列數(shù)據(jù):如圖,從地面E點(diǎn)測得地下停車場的俯角為30°,斜坡AE的長為16米,地面B點(diǎn)(與E點(diǎn)在同一個(gè)水平線)距停車場頂部C點(diǎn)(A、C、B在同一條直線上且與水平線垂直)1.2米.
(1)試求該校地下停車場的高度AC;
(2)求CD的高度,一輛高為6米的車能否通過該地下停車場(=1.73,結(jié)果精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科技公司推出一款新的電子產(chǎn)品,該產(chǎn)品有三種型號.通過市場調(diào)研后,按三種型號受消費(fèi)者喜愛的程度分別對A型、B型、C型產(chǎn)品在成本的基礎(chǔ)上分別加價(jià)20%,30%,45%出售(三種型號的成本相同).經(jīng)過一個(gè)季度的經(jīng)營后,發(fā)現(xiàn)C型產(chǎn)品的銷量占總銷量的,且三種型號的總利潤率為35%.第二個(gè)季度,公司決定對A型產(chǎn)品進(jìn)行升級,升級后A產(chǎn)品的成本提高了25%,銷量提高了20%;B、C產(chǎn)品的銷量和成本均不變,且三種產(chǎn)品在二季度成本基礎(chǔ)上分別加價(jià)20%,30%,45%出售,則第二個(gè)季度的總利潤率為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司投資新建了一商場,共有商鋪30間.據(jù)預(yù)測,當(dāng)每間的年租金定為10萬元時(shí),可全部租出.每間的年租金每增加5 000元,少租出商鋪1間.該公司要為租出的商鋪每間每年交各種費(fèi)用1萬元,未租出的商鋪每間每年交各種費(fèi)用5 000元.
(1)當(dāng)每間商鋪的年租金定為13萬元時(shí),能租出多少間?
(2)當(dāng)每間商鋪的年租金定為多少萬元時(shí),該公司的年收益(收益=租金-各種費(fèi)用)為275萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com