【題目】如圖,已知⊙O為△ABC(∠A<∠ABC)的外接圓,且AB的直徑,AB=8,點(diǎn)DAB延長(zhǎng)線上一點(diǎn),點(diǎn) E為半徑OB上一點(diǎn),連接CD、CE、OC,且∠BCD=∠A

1)求證:CD的切線;

2)若CB=CE,求證:CE2=CO2-OA·OE;

3)在(2)的條件下,求OE+BC的最大值.

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3OE+BC有最大值為5

【解析】

1)運(yùn)用圓的性質(zhì)和角的和差,確定∠OCD=BCD+∠BCO=90°,即可證明;(2)先證明△OBC∽△CBE,運(yùn)用其性質(zhì)結(jié)合等量代換即可解答.3)設(shè)BC=x,AB=8,∴OA=OC=4,結(jié)合(2)的結(jié)論,求二次函數(shù)的最小值即可;

解:(1)∵AB為⊙O直徑,

∴∠ACB=90°,

∴∠ACO+∠BCO=90°,

又∵OA=OC,∴∠A=∠ACO,

∵∠BCD=∠A,∴∠BCD+∠BCO=90°,∴CD為⊙O切線;

2)∵CE=CB,∴∠CEB=∠CBE,

OC=OB,∴∠OCB=∠OBC,

∴△OBC∽△CBE,

,即BC2=BE·OB,

BC=EC,OB=OC=OA,

CE2=(OB-OEOB= CO2-OA·OE

3)設(shè)BC=x,∵AB=8,∴OA=OC=4

由(2)知x2=16-4OE,∴OE=

OE+BC==,

∵∠A<∠ABC

0x,

∴當(dāng)x=2時(shí),OE+BC有最大值為5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線C1:y=- x2+mx+m+

1)①當(dāng)m=1時(shí),拋物線與x軸的交點(diǎn)坐標(biāo)為_______;②當(dāng)m=2時(shí),拋物線與x軸的交點(diǎn)坐標(biāo)為________;

2)①無(wú)論m取何值,拋物線經(jīng)過(guò)定點(diǎn)P________;②隨著m的取值的變化,頂點(diǎn)Mxy)隨之變化,yx的函數(shù),記為函數(shù)C2 , 則函數(shù)C2的關(guān)系式為:________;

3)如圖,若拋物線C1x軸僅有一個(gè)公共點(diǎn)時(shí),①直接寫(xiě)出此時(shí)拋物線C1的函數(shù)關(guān)系式;②請(qǐng)?jiān)趫D中畫(huà)出頂點(diǎn)M滿足的函數(shù)C2的大致圖象,在x軸上任取一點(diǎn)C,過(guò)點(diǎn)C作平行于y軸的直線l分別交C1、C2于點(diǎn)AB,若△PAB為等腰直角三角形,求點(diǎn)C的坐標(biāo);

4)二次函數(shù)的圖象C2y軸交于點(diǎn)N,連接PN,若二次函數(shù)的圖象C1與線段PN有兩個(gè)交點(diǎn),直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為4的正方形ABCD的一邊BC與直角邊分別是2和4的RtGEF的

一邊GF重合.正方形ABCD以每秒1個(gè)單位長(zhǎng)度的速度沿GE向右勻速運(yùn)動(dòng),當(dāng)點(diǎn)A和點(diǎn)E重合時(shí)正方形停止運(yùn)

動(dòng).設(shè)正方形的運(yùn)動(dòng)時(shí)間為t秒,正方形ABCD與RtGEF重疊部分面積為s,則s關(guān)于t的函數(shù)圖象為

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù),(k為常數(shù),k≠1).

(1)若點(diǎn)A(1,2)在這個(gè)函數(shù)的圖象上,求k的值;

(2)若在這個(gè)函數(shù)圖象的每一分支上,yx的增大而增大,求k的取值范圍;

(3)若k=13,試判斷點(diǎn)B(3,4),C(2,5)是否在這個(gè)函數(shù)的圖象上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,學(xué)校附近有一條筆直的公路l,其間設(shè)有區(qū)間測(cè)速,所有車輛限速40千米/小時(shí).?dāng)?shù)學(xué)實(shí)踐活動(dòng)小組設(shè)計(jì)了如下活動(dòng):在l上確定AB兩點(diǎn),并在AB路段進(jìn)行區(qū)間測(cè)速在l外取一點(diǎn)P,作PC1,垂足為點(diǎn)C.測(cè)得PC30米,∠APC71°,∠BPC35°,測(cè)得一汽車從點(diǎn)A到點(diǎn)B用時(shí)6秒,請(qǐng)你用所學(xué)的數(shù)學(xué)知識(shí)說(shuō)明該車是否超速?(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系xOy 中,拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)A(-1,0) 、B(3,0) 兩點(diǎn),且與y軸交于點(diǎn)C

.

(1)求拋物線的表達(dá)式;

(2)如圖②,用寬為4個(gè)單位長(zhǎng)度的直尺垂直于x軸,并沿x軸左右平移,直尺的左右兩邊所在的直線與拋物線相交于P、 Q兩點(diǎn)(點(diǎn)P在點(diǎn)Q的左側(cè)),連接PQ,在線段PQ上方拋物線上有一動(dòng)點(diǎn)D,連接DP、DQ.

①若點(diǎn)P的橫坐標(biāo)為,求DPQ面積的最大值,并求此時(shí)點(diǎn)D 的坐標(biāo);

②直尺在平移過(guò)程中,DPQ面積是否有最大值?若有,求出面積的最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD,AB=3,點(diǎn)E在邊CD,CD=3DE,將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.BG的長(zhǎng)為(

A. 1B. 2C. 1.5D. 2.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了對(duì)學(xué)生進(jìn)行革命傳統(tǒng)教育,紅旗中學(xué)開(kāi)展了“清明節(jié)祭掃”活動(dòng).全校學(xué)生從學(xué)校同時(shí)出發(fā),步行米到達(dá)烈士紀(jì)念館.學(xué)校要求九班提前到達(dá)目的地,做好活動(dòng)的準(zhǔn)備工作.行走過(guò)程中,九(1)班步行的平均速度是其他班的倍,結(jié)果比其他班提前分鐘到達(dá).分別求九(1)班、其他班步行的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,矩形ABOC的邊BOx軸的負(fù)半軸上,邊OCy軸的正半軸上,且AB=1,OB=,矩形ABOC繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)60°后得到矩形EFOD.點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)E,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)F,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)D,拋物線y=ax2+bx+c過(guò)點(diǎn)AE,D

1)判斷點(diǎn)E是否在y軸上,并說(shuō)明理由;

2)求拋物線的函數(shù)表達(dá)式;

3)在x軸的上方是否存在點(diǎn)P,點(diǎn)Q,使以點(diǎn)OB,PQ為頂點(diǎn)的平行四邊形的面積是矩形ABOC面積的2倍,且點(diǎn)P在拋物線上?若存在,請(qǐng)求出點(diǎn)P,點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案