【題目】如圖,∠MON=60°,作邊長為1的正六邊形A1B1C1D1E1F1 , 邊A1B1、F1E1分別在射線OM、ON上,邊C1D1所在的直線分別交OM、ON于點A2、F2 , 以A2F2為邊作正六邊形A2B2C2D2E2F2 , 邊C2D2所在的直線分別交OM、ON于點A3、F3 , 再以A3F3為邊作正六邊形A3B3C3D3E3F3 , …,依此規(guī)律,經(jīng)第n次作圖后,點Bn到ON的距離是

【答案】3n1?
【解析】解:點B1到ON的距離是 ,

點B2到ON的距離是3 ,

點B3到ON的距離是9

點B4到ON的距離是27 ,

點Bn到ON的距離是3n1

首先求出點B1,B2,B3,B4到ON的距離,條件規(guī)律后,利用條件規(guī)律解題即可。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,點是等腰三角形的底邊上的一個動點,過點的垂線,交直線于點,交的延長線于點,請觀察,它們有何數(shù)量關(guān)系?并證明你的猜想.

2)如果點沿著底邊所在的直線,按由的方向運動到的延長線上時,(1)中所得的結(jié)論還成立嗎?請你在圖2中完成圖形,寫出結(jié)論.并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,AD=5,過點A、B作⊙O,交AD,BC于點E,F(xiàn),連接BE,CE,過點F作FG⊥CE,垂足為G.

(1)當點F是BC的中點時,求證:直線FG與⊙O相切;
(2)若FG∥BE時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,,MBC的中點,DM平分

1)求證:AM平分;

2)線段DMAM有怎樣的位置關(guān)系?請說明理由;

3)線段CD、AB、AD間有怎樣的數(shù)量關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】利用我們學過的知識,可以得出下面這個優(yōu)美的等式:

;該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對稱性,還體現(xiàn)了數(shù)學的和諧、簡潔美.

.請你證明這個等式;

.如果,請你求出 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AM∥BN,∠A=60°,點P是射線M上一動點(與點A不重合),BC,BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.

(1)∠CBD=   

(2)當點P運動到某處時,∠ACB=∠ABD,則此時∠ABC=   

(3)在點P運動的過程中,∠APB與∠ADB的比值是否隨之變化?若不變,請求出這個比值:若變化,請找出變化規(guī)律.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得C的仰角為45°,已知OA=200米,山坡坡度為 (即tan∠PAB= ),且O,A,B在同一條直線上,求電視塔OC的高度以及此人所在的位置點P的垂直高度.(側(cè)傾器的高度忽略不計,結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來,學校對“在初中數(shù)學教學時總使用計算器是否直接影響學生計算能力的發(fā)展”這一問題密切關(guān)注,為此,某校隨機調(diào)查了n名學生對此問題的看法(看法分為三種:沒有影響,影響不大,影響很大),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計表和扇形統(tǒng)計圖,根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:
n名學生對這一問題的看法人數(shù)統(tǒng)計表

看法

沒有影響

影響不大

影響很大

學生人數(shù)(人)

40

60

m


(1)求n的值;
(2)統(tǒng)計表中的m=;
(3)估計該校1800名學生中認為“影響很大”的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BDC+EFC180°,DEFB

(1)DEBC是否平行,請說明理由;

(2)DE、F分別為ABAC、DC中點,連接BF,若四邊形 ADEF

查看答案和解析>>

同步練習冊答案