【題目】問題探究:在邊長為的正方形中,對角線、交于點(diǎn).
探究:如圖,若點(diǎn)是對角線上任意一點(diǎn),則線段的長的取值范圍是__________;
探究:如圖,若點(diǎn)是內(nèi)任意一點(diǎn),點(diǎn)、分別是邊和對角線上的兩個(gè)動(dòng)點(diǎn),則當(dāng) 的值在探究中的取值范圍內(nèi)變化時(shí), 的周長是否存在最小值?如果存在,請求出周長的最小值,若不存在,請說明理由;
問題解決:如圖,在邊長為的正方形中,點(diǎn)是內(nèi)任意一點(diǎn),且,點(diǎn)、分別是邊和對角線上的兩個(gè)動(dòng)點(diǎn),則當(dāng)的周長取到最小值時(shí),求四邊形面積的最大值.
【答案】();()存在,2;(3).
【解析】試題分析:(1)當(dāng)P與O重合時(shí),PA的值最小,最小值為 ;當(dāng)P與B或D重合時(shí),PA的值最大,最大值為4,即可得線段的長的取值范圍;(2)存在.如圖2中,作點(diǎn)P關(guān)于AB、AC的對稱點(diǎn)E、F,連接EF交AB于M,交AC于N,連接AE、AF、PA.由PM+MN+PN=EM+NM+NF=EF ,推出點(diǎn)P位置確定時(shí),此時(shí)△PMN的周長最小,最小值為線段EF的長,由∠PAM=∠EAM,∠PAN=∠FAN,∠BAC=45°,推出∠EAF=2∠BAC=90°,由PA=PE=PF,推出△EAF 是等腰直角三角形,由PA的最小值為,可得線段EF的最小值為2,由此即可解決問題;(3)如圖3中,在圖2的基礎(chǔ)上,以A為圓心AB為半徑作⊙A ,PA交EF于點(diǎn)O.由△MAP≌△MAE, △NAP≌△NAF,推出,由此可以知道△AMN 的面積最小時(shí),四邊形AMPN的面積最大.
試題解析:
(1)圖1中,
∵四邊形ABCD是正方形,邊長為4,
∴AC⊥BD,AC=BD=4
當(dāng)P與O重合時(shí),PA的值最小,最小值為2,
當(dāng)P與B或D重合時(shí),PA的值最大,最大值為4,
∴;
(2)存在.
理由:如圖2中,作點(diǎn)P關(guān)于AB、AC的對稱點(diǎn)E、F,連接EF交AB于M,交AC于N,連接AE、AF、PA.
∵PM+MN+PN=EM+NM+NF=EF,
∴點(diǎn)P位置確定時(shí),此時(shí)的周長最小,最小值為線段EF的長,
∵∠PAM=∠EAM,∠PAN=∠FAN,∠BAC=45°,
∴∠EAF=2∠BAC=90°,
∵PA=PE=PF,
∴△EAF是等腰直角三角形,
∵PA的最小值為,
∴線段EF的最小值為2,
∴△PMN的周長的最小值為2.
(3)如圖3中,在圖2的基礎(chǔ)上,以A為圓心AB為半徑作⊙A,PA交EF于點(diǎn)O.
根據(jù)題意點(diǎn)P在上⊙A,
∵△MAP≌△MAE, △NAP≌△NAF,
∴
∵PA=AE=AF=4,
∴=8.
∴△AMN的面積最小時(shí),四邊形AMPN的面積最大,
易知當(dāng)PA⊥MN時(shí), △AMN 的面積最小,此時(shí)OA=,OM=ON=OP=4-,
∴MN=8-4 ,
∴,
∴四邊形AMPN的面積的最大值=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形中, , ,過點(diǎn)作垂直直線于點(diǎn), ,再過點(diǎn)作垂直于直線于點(diǎn),則__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正方形ABCD(如圖1)作如下劃分:第1次劃分:分別連接正方形ABCD對邊的中點(diǎn)(如圖2),得線段HF和EG,它們交于點(diǎn)M,此時(shí)圖2中共有5個(gè)正方形;第2次劃分:將圖2左上角正方形AEMH按上述方法再作劃分,得圖3,則圖3中共有_________個(gè)正方形;若每次都把左上角的正方形依次劃分下去,則第100次劃分后,圖中共有_______個(gè)正方形;繼續(xù)劃分下去,能否將正方形ABCD劃分成有2011個(gè)正方形的圖形?需說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校準(zhǔn)備開展“陽光體育活動(dòng)”,決定開設(shè)以下體育活動(dòng)項(xiàng)目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項(xiàng),為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將獲得的數(shù)據(jù)進(jìn)行整理,繪制出兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)統(tǒng)計(jì)圖回答問題.
(1)這次活動(dòng)一共調(diào)查了________名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,選擇籃球項(xiàng)目的人數(shù)所在扇形的圓心角等于________度;
(4)若該學(xué)校有1000人,請你估計(jì)該學(xué)校選擇乒乓球項(xiàng)目的學(xué)生人數(shù)約是________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O在直線AB上,OC⊥OD,∠EDO與∠1互余.
(1)求證:ED//AB;
(2)OF平分∠COD交DE于點(diǎn)F,若∠OFD=65°,補(bǔ)全圖形,并求∠1的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)直接寫出A、B、C三點(diǎn)的坐標(biāo)和拋物線的對稱軸;
(2)連接,與拋物線的對稱軸交于點(diǎn),點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長,并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式,S是否有最大值?如有,請求出最大值,沒有請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖(1),如果AB∥CD∥EF. 那么∠BAC+∠ACE+∠CEF=360°.
老師要求學(xué)生在完成這道教材上的題目后,嘗試對圖形進(jìn)行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?
(1)小華首先完成了對這道題的證明,在證明過程中她用到了平行線的一條性質(zhì),小華用到的平行線性質(zhì)可能是______________.
(2)接下來,小華用《幾何畫板》對圖形進(jìn)行了變式,她先畫了兩條平行線AB,EF,然后在平行線間畫了一點(diǎn)C,連接AC,EC后,用鼠標(biāo)拖動(dòng)點(diǎn)C,分別得到了圖(2)(3)(4),小華發(fā)現(xiàn)圖(3)正是上面題目的原型,于是她由上題的結(jié)論猜想到圖(2)和(4)中的∠BAC,∠ACE與∠CEF之間也可能存在著某種數(shù)量關(guān)系.然后,她利用《幾何畫板》的度量與計(jì)算功能,找到了這三個(gè)角之間的數(shù)量關(guān)系.
請你在小華操作探究的基礎(chǔ)上,繼續(xù)完成下面的問題:
①猜想:圖(2)中∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系: .
②補(bǔ)全圖(4),并直接寫出圖中∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系: . (3)小華繼續(xù)探究:如圖(5),若直線AB與直線EF不平行,點(diǎn)G,H分別在直線AB、直線EF上,點(diǎn)C在兩直線外,連接CG,CH,GH,且GH同時(shí)平分∠BGC和∠FHC,請?zhí)剿鳌?/span>AGC,∠GCH與∠CHE之間的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)我們知道“三角形三個(gè)內(nèi)角的和為 180°”.現(xiàn)在我們用平行線的性質(zhì)來證明這個(gè)結(jié)論是正確的.
已知:∠BAC、∠B、∠C 是△ABC 的三個(gè)內(nèi)角,如圖 1.
求證:∠BAC+∠B+∠C=180° 證明:過點(diǎn) A 作直線 DE∥BC(請你把證明過程補(bǔ)充完整)
(2)請你用(1)中的結(jié)論解答下面問題:
如圖 2,已知四邊形 ABCD,求∠A+∠B+∠C+∠D 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進(jìn)一種每件價(jià)格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價(jià)x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)寫出每天的利潤W與銷售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場負(fù)責(zé)人,會將售價(jià)定為多少,來保證每天獲得的利潤最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com