【題目】如圖,正方形ABCD中,E、F分別為BC、CD的中點,AFDE交與點G.則下列結(jié)論中:①AFDE;②ADBG;③GE+GFGC;④SAGB2S四邊形ECFG.其中正確的是( 。

A.1B.2C.3D.4

【答案】D

【解析】

1)證△ADF≌△DCESAS),∠AFD+CDE90°=∠DGF,AFDE,故①正確;(2)過點BBHDEADH,交AFK,BHAG的垂直平分線,BGABAD,故②正確;(3)延長DEM,使得EMGF,連接CM,CEM≌△CFGSAS),△MCG為等腰直角三角形,故③正確;(4)過G點作TLAD,交ABT,交DCL,則GLAB,GLDC,證得△DGF∽△DCE,根據(jù)相似三角形性質(zhì)可以求出相應(yīng)面積關(guān)系..

解:

∵正方形ABCD,E,F均為中點

ADBCDC,ECDF$\frac{1}{2}$BC

∵在△ADF和△DCE中,

∴△ADF≌△DCESAS

∴∠AFD=∠DEC

∵∠DEC+CDE90°

∴∠AFD+CDE90°=∠DGF

AFDE,故①正確

如圖1,過點BBHDEADH,交AFK

AFDE,BHDEEBC的中點

BHAGHAD的中點

BHAG的垂直平分線

BGABAD,故②正確

如圖2

延長DEM,使得EMGF,連接CM

∵∠AFD=∠DEC

∴∠CEM=∠CFG

又∵E,F分別為BCDC的中點

CFCE

∵在△CEM和△CFG中,

∴△CEM≌△CFGSAS

CMCG,∠ECM=∠GCF

∵∠GCF+BCG90°

∴∠ECM+BCG=∠MCG90°

∴△MCG為等腰直角三角形

GMGE+EMGE+GF

故③正確

如圖3,過G點作TLAD,交ABT,交DCL,則GLABGLDC

設(shè)ECx,則DC2x,DFx,由勾股定理得DE

DEGF,易證得△DGF∽△DCE

S四邊形ECFGSDEC

S四邊形ECFGx2,SDGFx2

DFx

GL

TG

SAGB

SAGB2S四邊形ECFG

故④正確,

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是反比例函數(shù)y在第一象限內(nèi)的圖象上的兩點,且AB兩點的橫坐標(biāo)分別是13,則SAOB_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtAOB的斜邊AB切⊙O于點COA交⊙O于點D,連接DC并延長交OB的延長線于點E.已知∠A=E,若AB=6,則BC的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年湖南省進入高中學(xué)習(xí)的學(xué)生三年后將面對新高考,高考方案與高校招生政策都將有重大變化。某部門為了了解政策的宣傳情況,對某初級中學(xué)學(xué)生進行了隨機抽樣調(diào)查,根據(jù)學(xué)生對政策的了解程度由高到低分為A,B,C,D四個等級,并對調(diào)查結(jié)果分析后繪制了如下兩幅圖不完整的統(tǒng)計圖。請你根據(jù)圖中提供的信息完成下列問題:

(1)求被調(diào)查學(xué)生的人數(shù),并將條形統(tǒng)計圖補充完整;

(2)求扇形統(tǒng)計圖中的A等對應(yīng)的扇形圓心角的度數(shù);

(3)已知該校有1500名學(xué)生,估計該校學(xué)生對政策內(nèi)容了解程度達到A等的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】,分別是的邊、延長線上的點,的延長線交

1)如圖1,,,求證:

2)如圖2,,,,,求;

3)如圖3,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GEBC,垂足為點E,GFCD,垂足為點F.

(1)證明與推斷:

①求證:四邊形CEGF是正方形;

②推斷:的值為   

(2)探究與證明:

將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AGBE之間的數(shù)量關(guān)系,并說明理由:

(3)拓展與運用:

正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CGAD于點H.若AG=6,GH=2,則BC=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,射線BC交⊙O于點D,E是劣弧AD上一點,且,過點EEFBC于點F,延長FEBA的延長線交與點G

1)證明:GF是⊙O的切線;

2)若AG6,GE6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如右圖,點A的坐標(biāo)為(0,1),點Bx軸正半軸上的一動點,以AB為邊作等腰直角ABC,使∠BAC=90°,如果點B的橫坐標(biāo)為x,點C的縱坐標(biāo)為y,那么表示yx的函數(shù)關(guān)系的圖像大致是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在開展“經(jīng)典閱讀”活動中,某學(xué)校為了解全校學(xué)生利用課外時間閱讀的情況,學(xué)校團委隨機抽取若干名學(xué)生,調(diào)查他們一周的課外閱讀時間,并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計表.根據(jù)圖表信息,解答下列問題:

頻率分布表

閱讀時間(小時)

頻數(shù)(人)

頻率

6

0.12

0.24

15

0.3

12

5

0.1

合計

1

1)求__________,_________;

2)將頻數(shù)分布直方圖補充完整(畫圖后請標(biāo)注相應(yīng)的頻數(shù));

3)在范圍內(nèi)的5名同學(xué)中恰好有2名男生和3名女生,現(xiàn)從中隨機挑選2名同學(xué)代表學(xué)校參加全市經(jīng)典閱讀比賽,請用樹狀圖法或者列表法求出恰好選中“11女”的概率.

查看答案和解析>>

同步練習(xí)冊答案