【題目】如圖,Rt△ABO在直角坐標(biāo)系中,AB⊥x軸于點(diǎn)B,AO=10,sin∠AOB=.
(1)若反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)AO的中點(diǎn)C,求k的值;
(2)在(1)的條件下,若反比例函數(shù)y=(x>0)的圖象與AB交于點(diǎn)D,當(dāng)點(diǎn)C,D位于直線(xiàn)l:y=﹣x+b的異側(cè)時(shí),求b的取值范圍;
(3)若點(diǎn)D關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為E,當(dāng)反比例函數(shù)y=的圖象和線(xiàn)段AE有公共點(diǎn)時(shí),直接寫(xiě)出k的取值范圍.
【答案】(1)12(2)7<b<9;(3)﹣12≤k<0或0<k≤48
【解析】分析:(1)根據(jù)A(8,6),點(diǎn)C是AO的中點(diǎn),求得C(4,3),進(jìn)而求得k的值;(2)先求得點(diǎn)C,D的坐標(biāo),再根據(jù)點(diǎn)C,D位于直線(xiàn)L:y=x+b的異側(cè),即可求得到b的取值范圍;(3)先根據(jù)過(guò)點(diǎn)E的反比例函數(shù)解析式y= ,過(guò)點(diǎn)A的反比例函數(shù)解析式y= ,再根據(jù)反比例函數(shù)y= 的圖像和線(xiàn)段AE由公共點(diǎn),即可求得k的取值范圍。
詳解:(1)∵AO=10,sin∠AOB=,
∴AB=AOsin∠AOB=6,OB=8,即A(8,6),
∵點(diǎn)C是AO的中點(diǎn),
∴C(4,3),
∵反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)AO的中點(diǎn)C,
∴k=4×3=12;
(2)把x=8代入反比例函數(shù)y=,可得y=,
∴D(8,),
把D的坐標(biāo)代入直線(xiàn)y=﹣x+b,可得b=9,
把C(4,3)代入直線(xiàn)y=﹣x+b,可得b=7,
∵點(diǎn)C,D位于直線(xiàn)l:y=﹣x+b的異側(cè),
∴7<b<9;
(3)∵點(diǎn)D(8,)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為E(﹣8,),
∴過(guò)點(diǎn)E的反比例函數(shù)解析式為y=,
∵A(8,6),
∴過(guò)點(diǎn)A的反比例函數(shù)解析式為y=,
∵反比例函數(shù)y=的圖象和線(xiàn)段AE有公共點(diǎn),
∴﹣12≤k<0或0<k≤48.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是某校“河南省漢子聽(tīng)寫(xiě)大賽初賽”冠軍組成員的年齡分布
年齡/歲 | 12 | 13 | 14 | 15 |
人數(shù) | 5 | 15 | x | 12﹣x |
對(duì)于不同的x,下列關(guān)于年齡的統(tǒng)計(jì)量不會(huì)發(fā)生改變的是( 。
A. 平均數(shù)、中位數(shù) B. 平均數(shù)、方差 C. 眾數(shù)、中位數(shù) D. 中位數(shù)、方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】七年級(jí)進(jìn)行法律知識(shí)競(jìng)賽,共有30道題,答對(duì)一道題得4分,不答或答錯(cuò)一道題扣2分.
(1)小紅同學(xué)參加了競(jìng)賽,成績(jī)是96分,請(qǐng)問(wèn)小紅在競(jìng)賽中答對(duì)了多少題?
(2)小明也參加了競(jìng)賽,考完后他說(shuō):“這次竟賽中我一定能拿到110分.”請(qǐng)問(wèn)小明有沒(méi)有可能拿到110分?試用方程的知識(shí)來(lái)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)將下列證明過(guò)程補(bǔ)充完整:
已知:如圖,點(diǎn)B、E分別在AC、DF上,AF分別交BD、CE于點(diǎn)M、N,∠1=∠2,∠A=∠F.求證:∠C=∠D.
證明:∵∠1=∠2(已知),
又∵∠1=∠ANC( ),
∴ ∠=∠(等量代換).
∴ ∥ ( ),
∴∠ABD=∠C( ).
又∵∠A=∠F(已知),
∴ ∥ ( ).
∴ ∠=∠ ( ).
∴∠C=∠D( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,彈性小球從點(diǎn)P(0,3)出發(fā),沿所示方向運(yùn)動(dòng),每當(dāng)小球碰到矩形OABC的邊時(shí)反彈,反彈時(shí)反射角等于入射角,當(dāng)小球第1次碰到矩形的邊時(shí),記為點(diǎn)P1,第2次碰到矩形的邊時(shí),記為點(diǎn)P2,…第n次碰到矩形的邊時(shí),記為點(diǎn)Pn,則點(diǎn)P4的坐標(biāo)是_____;點(diǎn)P125的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩地相距160千米,一輛汽車(chē)和一輛拖拉機(jī)同時(shí)由甲、乙兩地相向而行,1小時(shí)20分相遇.相遇后,拖拉機(jī)繼續(xù)前進(jìn),汽車(chē)在相遇處停留1個(gè)小時(shí)后調(diào)頭按原速返回,汽車(chē)在返回后半個(gè)小時(shí)追上了拖拉機(jī).
(1)在這個(gè)問(wèn)題中,1小時(shí)20分= 小時(shí);
(2)相向而行時(shí),汽車(chē)行駛 小時(shí)的路程+拖拉機(jī)行駛 小時(shí)的路程=160千米;同向而行時(shí),汽車(chē)行駛 小時(shí)的路程=拖拉機(jī)行駛 小時(shí)的路程;
(3)全程汽車(chē)、拖拉機(jī)各自行駛了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)用配方法解方程:x2﹣2x﹣1=0.
(2)解方程:2x2+3x﹣1=0.
(3)解方程:x2﹣4=3(x+2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上有三點(diǎn)A、B、C,請(qǐng)根據(jù)圖回答下列問(wèn)題:
(1)若將點(diǎn)B向左平移3個(gè)單位后,則A、B、C這三個(gè)點(diǎn)所表示的數(shù)誰(shuí)最?是多少?
(2)若將點(diǎn)A向右平移4個(gè)單位后,則A、B、C這三個(gè)點(diǎn)所表示的數(shù)誰(shuí)最大?最大的數(shù)比最小的數(shù)大多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“十九大”報(bào)告提出了我國(guó)將加大治理環(huán)境污染的力度,還我青山綠水,其中霧霾天氣讓環(huán)保和健康問(wèn)題成為焦點(diǎn),為了調(diào)查學(xué)生對(duì)霧霾天氣知識(shí)的了解程度,某校在全校學(xué)生中抽取400名同學(xué)做了一次調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了不完整的一種統(tǒng)計(jì)圖表.
對(duì)霧霾了解程度的統(tǒng)計(jì)表
對(duì)霧霾的了解程度 | 百分比 |
A.非常了解 | 5% |
B.比較了解 | m |
C.基本了解 | 45% |
D.不了解 | n |
請(qǐng)結(jié)合統(tǒng)計(jì)圖表,回答下列問(wèn)題:
(1)統(tǒng)計(jì)表中:m= ,n= ;
(2)請(qǐng)?jiān)趫D1中補(bǔ)全條形統(tǒng)計(jì)圖;
(3)請(qǐng)問(wèn)在圖2所示的扇形統(tǒng)計(jì)圖中,D部分扇形所對(duì)應(yīng)的圓心角是多少度?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com