【題目】如圖,在菱形,,.動點、分別從點、同時出發(fā),以的速度向點運動,連接、,取、的中點、,連接、.設運動的時間為.

1)求證:;

2)當為何值時,四邊形為菱形;

3)試探究:是否存在某個時刻,使四邊形為矩形,若存在,求出的值,若不存在,請說明理由.

【答案】1)證明詳見解析;(21;(3)不存在,理由詳見解析

【解析】

1)根據(jù)菱形的性質得到∠B=DAD=BCABDC,推出ADF≌△CBE,根據(jù)全等三角形的性質得到∠DFA=BEC,根據(jù)平行線的判定定理即可得到結論;

2)過DDMABM,連接GH,EF,推出四邊形AECF是平行四邊形,根據(jù)菱形的判定定理即可得到四邊形EGFH是菱形,證得四邊形DMEF是矩形,于是得到ME=DF=t列方程即可得到結論;

3)不存在,假設存在某個時刻t,使四邊形EHFG為矩形,根據(jù)矩形的性質列方程即可得到結果.

解:(1)證明:∵動點E、F同時運動且速度相等,

DF=BE,

∵四邊形ABCD是菱形,

∴∠B=D,AD=BC,ABDC,

ADFCBE中,

,

∴△ADF≌△CBE

∴∠DFA=BEC,

ABDC,

∴∠DFA=FAB,

∴∠FAB=BEC,

AFCE

2)如圖,過DDMABM,連接GHEF,

DF=BE=t,

AFCE,ABCD,

∴四邊形AECF是平行四邊形,

G、HAFCE的中點,

GHAB

∵四邊形EGFH是菱形,

GHEF

EFAB,∠FEM=90°,

DMAB,

DMEF,

∴四邊形DMEF是矩形,

ME=DF=t

AD=4,∠DAB=60°DMAB,

,

BE=4-2-t=t,

t=1

3)不存在,假設存在某個時刻t,使四邊形EHFG為矩形,

∵四邊形EHFG為矩形,

EF=GH,

,

解得t=0,0t4,

∴與原題設矛盾,

∴不存在某個時刻t,使四邊形EHFG為矩形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 是⊙O的直徑,點的中點,連接并延長至點,使,點上一點,且, 的延長線交的延長線于點, 交⊙O于點,連接.

1)求證: 是⊙O的切線;

2)當時,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某體育用品商店購進了足球和排球共20個,一共花了1360元,進價和售價如表:

足球

排球

進價(元/個)

80

50

售價(元/個)

95

60

l)購進足球和排球各多少個?

2)全部銷售完后商店共獲利潤多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B兩地被大山阻隔,若要從A地到B地,只能沿著如圖所示的公路先從A地到C地,再由C地到B地.現(xiàn)計劃開鑿隧道A,B兩地直線貫通,經(jīng)測量得:CAB=30°,CBA=45°,AC=20km,求隧道開通后與隧道開通前相比,從A地到B地的路程將縮短多少?(結果精確到0.1km,參考數(shù)據(jù): ≈1.414, ≈1.732

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點A、OB依次在直線MN上,現(xiàn)將射線OA繞點O沿順時針方向以每秒的速度旋轉,同時射線OB繞點O沿逆時針方向以每秒的速度旋轉,直線MN保持不動,如圖2,設旋轉時間為t0≤t≤60,單位秒)

1)當t2時,求∠AOB的度數(shù);

2)在運動過程中,當∠AOB第二次達到63°時,求t的值;

3)在旋轉過程中是否存在這樣的t,使得射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角(指大于而小于180°的角)的平分線?如果存在,請求出t的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,AC=BC=2,正方形CDEF的頂點D、F分別在AC、BC邊上,C、D兩點不重合,設CD的長度為xABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示yx之間的函數(shù)關系的是(

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年5月14日15日,“一帶一路”國際合作高峰壇在北京行,本屆壇期間,中國同30多個國家簽署經(jīng)貿合作協(xié)議,某廠準備生產(chǎn)甲、乙兩種商品共8萬件銷“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入1500元.

(1)甲商品與乙種商品的銷售單價各多少元?

(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在Rt△ABC中,∠ACB=90°,AC > BC,CDRt△ABC的高,EAC的中點,ED的延長線與CB的延長線相交于點F.

(1)求證:DFBFCF的比例中項;

(2)在AB上取一點G,如果AE·AC=AG·AD,求證:EG·CF=ED·DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為等邊三角形,邊上一點,在上取一點,使,在邊上取一點,使,則的度數(shù)為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案