【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)若△ABC經(jīng)過平移后得到△A1B1C1 , 已知點C1的坐標為(4,0),寫出頂點A1 , B1的坐標,并畫出△A1B1C1;
(2)若△ABC和△A2B2C2關于原點O成中心對稱圖形,寫出△A2B2C2的各頂點的坐標;
(3)將△ABC繞著點O按順時針方向旋轉90°得到△A3B3C3 , 寫出△A3B3C3的各頂點的坐標,并畫出△A3B3C3

【答案】
(1)

解:如圖,△A1B1C1為所作.

因為點C(﹣1,3)平移后的對應點C1的坐標為(4,0),

所以△ABC先向右平移5個單位,再向下平移3個單位得到△A1B1C1

所以點A1的坐標為(2,2),B1點的坐標為(3,﹣2);


(2)

解:因為△ABC和△A1B2C2關于原點O成中心對稱圖形,

所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);


(3)

解:如圖,△A2B3C3為所作,

A3(5,3),B3(1,2),C3(3,1).


【解析】(1)分別確定三個頂點平移后的對應點,順次連接可得;(2)根據(jù)中心對稱的性質(zhì)可得;(3)分別作出三個頂點繞著點O按順時針方向旋轉90°得到的對應點,順次連接可得.
【考點精析】根據(jù)題目的已知條件,利用平移的性質(zhì)和中心對稱及中心對稱圖形的相關知識可以得到問題的答案,需要掌握①經(jīng)過平移之后的圖形與原來的圖形的對應線段平行(或在同一直線上)且相等,對應角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應點所連的線段平行(或在同一直線上)且相等;如果把一個圖形繞著某一點旋轉180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點旋轉180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列調(diào)查中,調(diào)查方式選擇不合理的是  

A. 調(diào)查我國中小學生觀看電影厲害了,我的國情況,采用抽樣調(diào)查的方式

B. 調(diào)查全市居民對老年餐車進社區(qū)活動的滿意程度,采用抽樣調(diào)查的方式

C. 調(diào)查神州十一號運載火箭發(fā)射前零部件質(zhì)量狀況,采用全面調(diào)查普查的方式

D. 調(diào)查市場上一批LED節(jié)能燈的使用壽命,采用全面調(diào)查普查的方式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙D的直徑,AD切⊙D于點A,EC=CB.則下列結論:①BA⊥DA; ②OC∥AE;③∠COE=2∠CAE;④OD⊥AC.一定正確的個數(shù)有(

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,并且關于x的一元二次方程ax2+bx+c﹣m=0有兩個不相等的實數(shù)根,下列結論: ①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,
其中,正確的個數(shù)有(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一張等邊三角形紙片沿中位線剪成4個小三角形,稱為第一次操作;然后,將其中的一個三角形按同樣方式再剪成4個小三角形,共得到7個小三角形,稱為第二次操作;再將其中一個三角形按同樣方式再剪成4個小三角形,共得到10個小三角形,稱為第三次操作;…根據(jù)以上操作,若要得到100個小三角形,則需要操作的次數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術的廣泛應用,催生了快遞行業(yè)的高度發(fā)展,據(jù)調(diào)查,長沙市某家小型“大學生自主創(chuàng)業(yè)”的快遞公司,今年三月份與五月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件,現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.
(1)求該快遞公司投遞總件數(shù)的月平均增長率;
(2)如果平均每人每月最多可投遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務員能否完成今年6月份的快遞投遞任務?如果不能,請問至少需要增加幾名業(yè)務員?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點B順時針旋轉60°,得到△BDE,連接DC交AB于點F,則△ACF與△BDF的周長之和為cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊各10人的比賽成績?nèi)缦卤?10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;

(2)計算乙隊的平均成績和方差;

(3)已知甲隊成績的方差是1.4,則成績較為整齊的是 隊.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,BC=3,M為BC中點,連接AM,過D作DE⊥AM于E,則DE的長度為(
A.2
B.
C.
D.

查看答案和解析>>

同步練習冊答案