【題目】在直角坐標(biāo)系中,⊙C過原點(diǎn)O,交x軸于點(diǎn)A(2,0),交y軸于點(diǎn)B(0,).
(1)求圓心C的坐標(biāo).
(2)拋物線y=ax2+bx+c過O,A兩點(diǎn),且頂點(diǎn)在正比例函數(shù)y=-的圖象上,求拋物線的解析式.
(3)過圓心C作平行于x軸的直線DE,交⊙C于D,E兩點(diǎn),試判斷D,E兩點(diǎn)是否在(2)中的拋物線上.
(4)若(2)中的拋物線上存在點(diǎn)P(x0,y0),滿足∠APB為鈍角,求x0的取值范圍.
【答案】(1)圓心C的坐標(biāo)為(1,);
(2)拋物線的解析式為y=x2﹣x;
(3)點(diǎn)D、E均在拋物線上;
(4)﹣1<x0<0,或2<x0<3.
【解析】
試題分析:(1)如圖線段AB是圓C的直徑,因?yàn)辄c(diǎn)A、B的坐標(biāo)已知,根據(jù)平行線的性質(zhì)即可求得點(diǎn)C的坐標(biāo);
(2)因?yàn)閽佄锞過點(diǎn)A、O,所以可求得對(duì)稱軸,即可求得與直線y=﹣x的交點(diǎn),即是二次函數(shù)的頂點(diǎn)坐標(biāo),利用頂點(diǎn)式或者一般式,采用待定系數(shù)法即可求得拋物線的解析式;
(3)因?yàn)镈E∥x軸,且過點(diǎn)C,所以可得D、E的縱坐標(biāo)為,求得直徑AB的長,可得D、E的橫坐標(biāo),代入解析式即可判斷;
(4)因?yàn)锳B為直徑,所以當(dāng)拋物線上的點(diǎn)P在⊙C的內(nèi)部時(shí),滿足∠APB為鈍角,所以﹣1<x0<0,或2<x0<3.
試題分析:(1)∵⊙C經(jīng)過原點(diǎn)O
∴AB為⊙C的直徑
∴C為AB的中點(diǎn)
過點(diǎn)C作CH垂直x軸于點(diǎn)H,則有CH=OB=,OH=OA=1
∴圓心C的坐標(biāo)為(1,).
(2)∵拋物線過O、A兩點(diǎn),
∴拋物線的對(duì)稱軸為x=1,
∵拋物線的頂點(diǎn)在直線y=﹣x上,
∴頂點(diǎn)坐標(biāo)為(1,﹣).
把這三點(diǎn)的坐標(biāo)代入拋物線y=ax2+bx+c,得,
解得,
∴拋物線的解析式為y=x2﹣x.
(3)∵OA=2,OB=2,
∴AB==4,即⊙C的半徑r=2,
∴D(3,),E(﹣1,),
代入y=x2﹣x檢驗(yàn),知點(diǎn)D、E均在拋物線上.
(4)∵AB為直徑,
∴當(dāng)拋物線上的點(diǎn)P在⊙C的內(nèi)部時(shí),滿足∠APB為鈍角,
∴﹣1<x0<0,或2<x0<3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AB=4cm,CD⊥AB于點(diǎn)D,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC以2cm/s的速度向終點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P出發(fā)后,過點(diǎn)P作PQ∥BC交折線AD﹣DC于點(diǎn)Q,以PQ為邊作等邊三角形PQR,設(shè)四邊形APRQ與△ACD重疊部分圖形的面積為S(cm2),點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).
(1)當(dāng)點(diǎn)Q在線段AD上時(shí),用含t的代數(shù)式表示QR的長;
(2)求點(diǎn)R運(yùn)動(dòng)的路程長;
(3)當(dāng)點(diǎn)Q在線段AD上時(shí),求S與t之間的函數(shù)關(guān)系式;
(4)直接寫出以點(diǎn)B、Q、R為頂點(diǎn)的三角形是直角三角形時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程4x2+1=4x的根的情況是( )
A.沒有實(shí)數(shù)根
B.只有一個(gè)實(shí)數(shù)根
C.有兩個(gè)相等的實(shí)數(shù)根
D.有兩個(gè)不相等的實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B=90°,E是AB上的一點(diǎn),且AE=BC,∠1=∠2.
(1)Rt△ADE與Rt△BEC全等嗎?并說明理由;
(2)△CDE是不是直角三角形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AE=CF,∠AFD=∠CEB,那么添加下列一個(gè)條件后,仍無法判定△ADF≌△CBE的是( )
A. ∠A=∠C B. AD=CB C. BE=DF D. AD∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上三點(diǎn)A,O,B對(duì)應(yīng)的數(shù)分別為﹣3,0,1,點(diǎn)P為數(shù)軸上任意一點(diǎn),其表示的數(shù)為x.
(1)如果點(diǎn)P到點(diǎn)A,點(diǎn)B的距離相等,那么x=;
(2)當(dāng)x=時(shí),點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和是6;
(3)若點(diǎn)P到點(diǎn)A,點(diǎn)B的距離之和最小,則x的取值范圍是;
(4)在數(shù)軸上,點(diǎn)M,N表示的數(shù)分別為x1 , x2 , 我們把x1 , x2之差的絕對(duì)值叫做點(diǎn)M,N之間的距離,即MN=|x1﹣x2|.
若點(diǎn)P以每秒3個(gè)單位長度的速度從點(diǎn)O向左運(yùn)動(dòng)時(shí),點(diǎn)E以每秒1個(gè)單位長度的速度從點(diǎn)A向左運(yùn)動(dòng)、點(diǎn)F以每秒4個(gè)單位長度的速度從點(diǎn)B也向左運(yùn)動(dòng),且三個(gè)點(diǎn)同時(shí)出發(fā),那么運(yùn)動(dòng)秒時(shí),點(diǎn)P到點(diǎn)E,點(diǎn)F的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只跳蚤在第一象限及x軸、y軸上跳動(dòng),在第一秒鐘,它從原點(diǎn)跳動(dòng)到(0,1),然后接著按圖中箭頭所示方向跳動(dòng):即(0,0)→(0,1) →(1,1)→(1,0)→…,且每秒跳動(dòng)一個(gè)單位,那么第35秒時(shí)跳蚤所在位置的坐標(biāo)是( )
A.(4,0)
B.(5,0)
C.(0,5)
D.(5,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為200元、170元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:
(進(jìn)價(jià)、售價(jià)均保持不變,利潤=銷售收入﹣進(jìn)貨成本)
(1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);
(2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號(hào)的電風(fēng)扇共30臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購多少臺(tái)?
(3)在(2)的條件下,超市銷售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購方案;若不能,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com