【題目】如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,D為AC中點,E為AB上的動點,將ED繞點D逆時針旋轉(zhuǎn)90°得到FD,連CF,則線段CF的最小值為_____.
【答案】4
【解析】
如圖所示,過F作FH⊥AC于H,則∠A=∠DHF=90°,由“AAS”可證△ADE≌△HFD,可得HF=AD=4,當(dāng)點H與點C重合,線段CF的最小值為4.
如圖所示,過F作FH⊥AC于H,則∠A=∠DHF=90°,
∵AC=8,D為AC中點,
∴AD=4,
由旋轉(zhuǎn)可得,DE=DF,∠EDF=90°,
∴∠ADE+∠FDH=90°,∠FDH+∠DFH=90°,
∴∠ADE=∠DFH,且DE=DF,∠A=∠DHF=90°,
∴△ADE≌△HFD(AAS),
∴HF=AD=4,
∴當(dāng)點H與點C重合,
此時CF=HF=4,
∴線段CF的最小值為4,
故答案為:4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在大課間活動中,體育老師隨機抽取了九年級甲、乙兩班部分女生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和頻數(shù)直方圖,請你根據(jù)圖表中的信息完成下列問題:
(1)頻數(shù)分布表中a= ,b= ;
(2)將頻數(shù)直方圖補充完整;
(3)如果該校九年級共有女生360人,估計仰臥起坐能夠一分鐘完成30次或30次以上的女學(xué)生有多少人?
(4)已知第一組有兩名甲班學(xué)生,第四組中只有一名乙班學(xué)生,老師隨機從這兩個組中各選一名學(xué)生談心得體會,則所選兩人正好都是甲班學(xué)生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)直線l1:y=x+1與x軸交于點A,直線l2:y=﹣x+3與x軸交于點B,l1與l2交于點C,直線l3過線段AB的中點和點C,求直線l3的解析式;
(2)已知平面直角坐標系中,直線l經(jīng)過點P(2,1)且與雙曲線y=交于A、B不同兩點,問是否存在這樣的直線l,使得點P恰好為線段AB的中點,若存在,求出直線l的解析式,若不存在,請說明理由;
(3)若A(x1,y1)、B(x2,y2)是拋物線y=4x2上的不同兩點(y1≠y2),線段AB的垂直平分線與y軸交于點P,與線段AB交于點M(xm,ym),則稱線段AB為點P的一條“相關(guān)弦”,若點P的坐標為(0,a)時(a為常數(shù)),證明點P的“相關(guān)弦”中點M的縱坐標相同.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖拋物線與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).B的坐標為(1,0),且OC=4OB.
(1)求點C坐標及拋物線的解析式;
(2)若點D是線段AC下方拋物線上的動點,求△ACD面積的最大值;
(3)若點E在x軸上,點P在拋物線上.是否存在以A,C,E,P為頂點且以AC為一邊的平行四邊形?若存在,直接寫出P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與y軸交于點A(0,4),與x軸交于點B,C,點C坐標為(8,0),連接AB,AC.
(1)請直接寫出二次函數(shù)的解析式.
(2)判斷△ABC的形狀,并說明理由.
(3)若點N在x軸上運動,當(dāng)以點A,N,C為頂點的三角形是等腰三角形時,請寫出此時點N的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一種商品,進價為每件15元,規(guī)定每件商品售價不低于進價,且每天銷售量不低于90件經(jīng)調(diào)查發(fā)現(xiàn),每天的銷售量y(件)與每個商品的售價x(元)滿足一次函數(shù)關(guān)系,其部分數(shù)據(jù)如下表所示:
每個商品的售價x(元) | … | 30 | 40 | 50 | … |
每天的銷售量y(件) | … | 100 | 80 | 60 | … |
(1)填空:y與x之間的函數(shù)關(guān)系式是______.
(2)設(shè)商場每天獲得的總利潤為w(元),求w與x之間的函數(shù)關(guān)系式;
(3)不考慮其他因素,當(dāng)商品的售價為多少元時,商場每天獲得的總利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線y=ax2﹣4amx+3am2(a、m為參數(shù),且a>0,m>0)與x軸交于A、B兩點(A在B的左邊),與y軸交于點C.
(1)求點B的坐標(結(jié)果可以含參數(shù)m);
(2)連接CA、CB,若C(0,3m),求tan∠ACB的值;
(3)如圖②,在(2)的條件下,拋物線的對稱軸為直線l:x=2,點P是拋物線上的一個動點,F是拋物線的對稱軸l上的一點,在拋物線上是否存在點P,使△POF成為以點P為直角頂點的的等腰直角三角形.若存在,求出所有符合條件的點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.如圖,小明在大樓的東側(cè)A處發(fā)現(xiàn)正前方仰角為75°的方向上有一熱氣球在C處,此時,小亮在大樓的西側(cè)B處也測得氣球在其正前方仰角為30°的位置上,已知AB的距離為60米,試求此時小明、小亮兩人與氣球的距離AC和BC.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖坐標系中,O(0,0),A(6,6),B(12,0),將△OAB沿直線CD折疊,使點A恰好落在線段OB上的點E處,若OE=,則AC:AD的值是( 。
A.1:2B.2:3C.6:7D.7:8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com