【題目】
(1)計算(2017﹣π)0﹣( 1+|﹣2|
(2)化簡(1﹣ )÷( ).

【答案】
(1)解:原式=1﹣4+2

=﹣1;


(2)解:原式= ÷

=

=


【解析】(1)根據(jù)零指數(shù)冪、負整數(shù)指數(shù)冪、絕對值分別求出每個部分的值,再代入求出即可;(2)先算減法和分解因式,把除法變成乘法,最后根據(jù)分式的乘法法則進行計算即可.
【考點精析】通過靈活運用分式的混合運算和零指數(shù)冪法則,掌握運算的順序:第一級運算是加法和減法;第二級運算是乘法和除法;第三級運算是乘方.如果一個式子里含有幾級運算,那么先做第三級運算,再作第二級運算,最后再做第一級運算;如果有括號先做括號里面的運算.如順口溜:"先三后二再做一,有了括號先做里."當有多層括號時,先算括號內(nèi)的運算,從里向外{[(?)]};零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù))即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】xy定義一種新運算T,規(guī)定:T(x,y)=ax+2by-1(其中a,b均為非零常數(shù)),這里等式右邊是通常的四則運算,例如:T(0,1)=a·0+2b·1-1=2b-1.已知T(1,-1)=-2,T(-3,2)=4.

(1)求a,b的值;

(2)利用(1)的結(jié)果化簡求值:(ab)2-(a+2b)·(a-2b)+2a(1+b).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A,B,C為⊙O上相鄰的三個n等分點, ,點E在 上,EF為⊙O的直徑,將⊙O沿EF折疊,使點A與A′重合,點B與B′重合,連接EB′,EC,EA′.設EB′=b,EC=c,EA′=p.現(xiàn)探究b,c,p三者的數(shù)量關(guān)系:發(fā)現(xiàn)當n=3時,p=b+c.請繼續(xù)探究b,c,p三者的數(shù)量關(guān)系:當n=4時,p=;當n=12時,p= . (參考數(shù)據(jù):sin15°=cos75°= ,cos15°=sin75°=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A(2,0),B(0,4),作△BOC,使△BOC△ABO全等,則點C坐標為_____________.(點C不與點A重合)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正整數(shù)中,

(1﹣)=(1﹣)(1+

(1﹣)=(1﹣)(1+

(1﹣)=(1﹣)(1+

觀察上面的算式,可以歸納得出: =   

利用上述規(guī)律,計算下列各式:(1﹣)×(1﹣)×(1﹣)=   

(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=   (請將結(jié)題步驟寫在下方空白處)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成4 個小長方形,然后按圖2的形狀拼成一個正方形.

(1)2中陰影部分的面積為 ;

(2)觀察圖2,請你寫出式子(m+n)2,(m-n)2,mn之間的等量關(guān)系:

(3)x+y=-6,xy=2.75,求x-y的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小區(qū)將原來400平方米的正方形場地改建成300平方米的長方形場地,且長和寬之比為3∶2.如果把原來正方形場地的鐵柵欄圍墻利用起來圍成新場地的長方形圍墻,那么這些鐵柵欄是否夠用?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,直線AB、CD相交于點O,∠COE=90°,若∠BOD:∠BOC=1:5.

(1)求∠AOC的度數(shù);

(2)如圖,過點O作OF⊥AB,求∠DOF與∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BC△ABD的角平分線,BC=DC,∠A=∠E=30°,∠D=50°.

(1)寫出AB=DE的理由;

(2)∠BCE的度數(shù).

查看答案和解析>>

同步練習冊答案