【題目】有一組平行線過點A作AM⊥于點M,作∠MAN=60°,且AN=AM,過點N作CN⊥AN交直線于點C,在直線上取點B使BM=CN,若直線與間的距離為2,與間的距離為4,則BC=______.
【答案】
【解析】
證明△ABM≌△ACN(SAS),即可證出AB=AC,∠BAC=∠CAN=60°,證出ABC為等邊三角形;在圖1中,過點N作HG⊥a于H,交c于點G,由勾股定理先求出CN的值,就可以求出AC的值即可.
解:∵AM⊥b,CN⊥AN,
∴∠AMB=∠ANC=90°,
在△ABM與△ACN中,,
∴△ABM≌△ACN(SAS),
∴∠BAM=∠CAN,AB=AC;
∴∠BAC=∠MAN=60°,
∴△ABC為等邊三角形.
如圖1,過點N作HG⊥a于H,交c于點G,
∴∠AHN=∠NGC=90°.
∵∠MAN=60°,
∴∠HAN=30°,
∴AN=2HN,∠ANH=60°,
∵AM=AN=2,
∴HN=1.
∴NG=5.
∵CN⊥AN,
∴∠ANC=90°,
∴∠ANH+∠CNG=90°,
∴∠CNG=30°,
∴CN=2CG,
在Rt△CGN中,由勾股定理,得
4CG2-CG2=25,CG=,
∴CN=
在Rt△ANC中,由勾股定理,得
AC2=()2+22,
∴AC=,
∴BC=AC=.
故答案為:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線交AC于點D,點O是AB上一點,⊙O過B、D兩點,且分別交AB,BC于點E,F(xiàn).
(1)求證:AC是⊙O的切線;
(2)已知AB=5,AC=4,求⊙O的半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,拋物線 (m>0)與x軸交于A,B兩點.若A,B兩點到原點的距離分別為OA,OB,且滿足 ,則m的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)如圖1,AC和BD相交于點O,OA=OC,OB=OD,求證:DC∥AB.
(2)如圖2,在⊙O中,直徑AB=6,AB與弦CD相交于點E,連接AC、BD,若AC=2,求cosD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在10×10的正方形網(wǎng)格中,每個小正方形的邊長為1個單位長度.△ABC的頂點都在正方形網(wǎng)格的格點上,且通過兩次平移(沿網(wǎng)格線方向作上下或左右平移)后得到△,點C的對應(yīng)點是直線上的格點.
(1)畫出△.
(2)若連接、,則這兩條線段之間的關(guān)系是 .
(3)試在直線上畫出所有符合題意的格點P,使得由點、、、P四點圍成的四邊形的面積為9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P1、P2(P2在P1的右側(cè))是y= (k>0)在第一象限上的兩點,點A1的坐標(biāo)為(2,0).
(1)填空:當(dāng)點P1的橫坐標(biāo)逐漸增大時,△P1OA1的面積將(減小、不變、增大)
(2)若△P1OA1與△P2A1A2均為等邊三角形,
①求反比例函數(shù)的解析式;
②求出點P2的坐標(biāo),并根據(jù)圖象直接寫在第一象限內(nèi),當(dāng)x滿足什么條件時,經(jīng)過點P1、P2的一次函數(shù)的函數(shù)值大于反比例函數(shù)y= 的函數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,點A(4,0),點B(m, m),點C為線段OA上一點(點O為原點),則AB+BC的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,購買“黃金1號”王米種子,所付款金額y元與購買量x(千克)之間的函數(shù)圖象由線段OA和射線AB組成,則購買1千克“黃金1號”玉米種子需付款___元,購買4千克“黃金1號”玉米種子需___元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com