【題目】已知是⊙的直徑,是⊙的切線,是切點,與⊙交于點.
(1)如圖①,若,,求的長(結(jié)果保留根號);
(2)如圖②,若為的中點,求證:直線是⊙的切線.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸相交于、兩點,與軸交于點,且tan.設(shè)拋物線的頂點為,對稱軸交軸于點.
(1)求拋物線的解析式;
(2)為拋物線的對稱軸上一點,為軸上一點,且.
①當(dāng)點在線段(含端點)上運動時,求的變化范圍;
②當(dāng)取最大值時,求點到線段的距離;
③當(dāng)取最大值時,將線段向上平移個單位長度,使得線段與拋物線有兩個交點,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,南海某海域有兩艘外國漁船A、B在小島C的正南方向同一處捕魚.一段時間后,漁船B沿北偏東30°的方向航行至小島C的正東方向20海里處.
(1)求漁船B航行的距離;
(2)此時,在D處巡邏的中國漁政船同時發(fā)現(xiàn)了這兩艘漁船,其中B漁船在點D的南偏西60°方向,A漁船在點D的西南方向,我漁政船要求這兩艘漁船迅速離開中國海域.請分別求出中國漁政船此時到這兩艘外國漁船的距離.(注:結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a≠0)過A(4,0),B(1,3)兩點,點C、B關(guān)于拋物線的對稱軸對稱,過點B作直線BH⊥x軸,交x軸于點H.
(1)求拋物線的表達(dá)式;
(2)直接寫出點C的坐標(biāo),并求出△ABC的面積;
(3)點P是拋物線上一動點,且位于第四象限,是否存在這樣的點P,使得△ABP的面積為△ABC面積的2倍?若存在,求出點P的坐標(biāo),若不存在,請說明理由;
(4)若點M在直線BH上運動,點N在x軸正半軸上運動,當(dāng)以點C,M,N為頂點的三角形為等腰直角三角形時,請直接寫出此時△CMN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(3,0),B(﹣1,0),C(0,﹣3).
(1)求該拋物線的解析式;
(2)若以點A為圓心的圓與直線BC相切于點M,求切點M的坐標(biāo);
(3)若點Q在x軸上,點P在拋物線上,是否存在以點B,C,Q,P為頂點的四邊形是平行四邊形?若存在,求點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點M的坐標(biāo)為,點N的坐標(biāo)為,點P為拋物線上的一個動點,當(dāng)之長最短時點P的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD頂點A在例函數(shù)y=(x>0)的圖象上,函數(shù) y=(k>3,x>0)的圖象關(guān)于直線AC對稱,且經(jīng)過點B、D兩點,若AB=2,∠DAB=30°,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°.
(1)用尺規(guī)作圖作∠ABC的角平分線,交AC于點D;(保留作圖痕跡,不寫作法).
(2)求證:△BCD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場對某種商品進(jìn)行銷售,第x天的銷售單價為m元/件,日銷售量為n件,其中m,n分別是x(1≤x≤30,且x為整數(shù))的一次函數(shù),銷售情況如下表:
(1)過程表中數(shù)據(jù),分別直接寫出m與x,n與x的函數(shù)關(guān)系式: , ;
(2)求商場銷售該商品第幾天時該商品的日銷售額恰好為3600元?
(3)銷售商品的第15天為兒童節(jié),請問:在兒童節(jié)前(不包括兒童節(jié)當(dāng)天)銷售該商品第幾天時該商品的日銷售額最多?商場決定將這天該商品的日銷售額捐獻(xiàn)給兒童福利院,試求出商場可捐款多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com