【題目】在平面直角坐標(biāo)系中,函數(shù)的圖象記為,函數(shù)的圖象記為,其中為常數(shù).圖象,合起來得到的圖象記為.
(1)當(dāng)時,
①點在圖象上,求的值;
②求圖象與軸的交點坐標(biāo);
(2)當(dāng)圖象的最低點到軸距離為時,求的值;
(3)已知線段的兩個端點坐標(biāo)分別為,,當(dāng)圖象與線段有兩個交點時,直接寫出的取值范圍.
【答案】(1)①;②交點坐標(biāo),,;(2)或;(3)或
【解析】
(1)①將a=2代入函數(shù),求出函數(shù)解析式,再將點P代入即可解答;
②分兩種情況分析,當(dāng)x>2時和當(dāng)時,分別解方程即可;
(2)分兩種情況,時以及時,分別畫出圖象,確定M2何時取最低點,再列出方程解答即可;
(3)當(dāng),可分兩種情況,分別畫出圖形,結(jié)合圖形列出不等式;,畫出圖形,根據(jù)題意,結(jié)合圖形,列出不等式即可解答.
(1)①時,函數(shù).
在圖象上,代入中,得;
②當(dāng)x>2時,,,(舍)
當(dāng)時,時,,
綜上,交點坐標(biāo)為,,.
(2)時,圖象如下所示,
當(dāng)時,取最低點
即(方程無解),或
解得,(舍去).
時,圖象如下所示,
即時,取最低點
即或(方程無解)
,(舍)
綜上,或.
(3)①,如圖所示,
即代入得,解得:.
代入得,解得:
代入得,解得:.
即.
②,如下圖所示,
即代入得,解得:.
代入得,解得:
代入得,解得:.
即.
③,如下圖所示,
即代入得,解得.
代入得,解得
代入得,解得.
即.
綜上所述,或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)若m為非負(fù)整數(shù),且該方程的根都是無理數(shù),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx2-(2m+1)x+m-5的圖象與x軸有兩個公共點.
()求m的取值范圍;
()若m取滿足條件的最小的整數(shù),
①寫出這個二次函數(shù)的表達(dá)式;
②當(dāng)n≤x≤1時,函數(shù)值y的取值范圍是-6≤y≤4-n,求n的值;
③將此二次函數(shù)圖象平移,使平移后的圖象經(jīng)過原點O.設(shè)平移后的圖象對應(yīng)的函數(shù)表達(dá)式為y=a(x-h(huán))2 +k,當(dāng)x<2時,y隨x的增大而減小,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正的邊長為2,頂點、在半徑為的圓上,頂點在圓內(nèi),將正繞點逆時針旋轉(zhuǎn),當(dāng)點第一次落在圓上時,則點運動的路線長為__________(結(jié)果保留);若點落在圓上記做第1次旋轉(zhuǎn),將繞點逆時針旋轉(zhuǎn),當(dāng)點第一次落在圓上記做第2次旋轉(zhuǎn),再繞將逆時針旋轉(zhuǎn),當(dāng)點第一次落在圓上,記做第3次旋轉(zhuǎn)……,若此旋轉(zhuǎn)下去,當(dāng)完成第2018次旋轉(zhuǎn)時,邊共回到原來位置__________次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)積極響應(yīng)正在開展的“創(chuàng)文活動”,組織甲、乙兩個志愿工程隊對社區(qū)的一些區(qū)域進(jìn)行綠化改造.已知甲工程隊每小時能完成的綠化面積是乙工程隊每小時能完成的綠化面積的2倍,并且甲工程隊完成300平方米的綠化面積比乙工程隊完成300平方米的綠化面積少用3小時,乙工程隊每小時能完成多少平方米的綠化面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,OD⊥弦BC于點F,交⊙O于點E,連接CE,AE,CD,若∠AEC=∠ODC.
(1)求證:直線CD為⊙O的切線;
(2)若AB=10,BC=8,則線段CD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校體育場看臺的側(cè)面如圖陰影部分所示,看臺有四級高度相等的小臺階.已知看臺高為1.6米,現(xiàn)要做一個不銹鋼的扶手AB及兩根與FG垂直且長為l米的不銹鋼架桿AD和BC(桿子的底端分別為D,C),且∠DAB=66.5°.
(1)求點D與點C的高度差DH;
(2)求所用不銹鋼材料的總長度l.(即AD+AB+BC,結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展黃梅戲演唱比賽,組委會將本次比賽的成績(單位:分)進(jìn)行整理,并繪制成如下頻數(shù)分布表和頻數(shù)分布直方圖(不完整).
成績 | 頻數(shù) | 頻率 |
| 2 | 0.04 |
| 0.16 | |
| 20 | 0.40 |
| 16 | 0.32 |
| 4 |
|
合計 | 50 | 1 |
請你根據(jù)圖表提供的信息,解答下列問題:
(1)求出,的值并補(bǔ)全頻數(shù)分布直方圖.
(2)將此次比賽成績分為三組:;;若按照這樣的分組方式繪制扇形統(tǒng)計圖,則其中組所在扇形的圓心角的度數(shù)是多少?
(3)學(xué)校準(zhǔn)備從不低于90分的參賽選手中任選2人參加市級黃梅戲演唱比賽,求都取得了95分的小欣和小怡同時被選上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 內(nèi)接于⊙O,∠B=60°,CD 是⊙O 的直徑,點 P 是 CD 延長線上的一點且 AP=AC.
(1)求證:PA 是⊙O 的切線;
(2)若,,求⊙O的半徑
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com