【題目】江都區(qū)教育行政部門為了了解八年級學生每學期參加綜合實踐活動的情況,隨機調(diào)查了部分學生,并將他們一學期參加綜合實踐活動的天數(shù)進行統(tǒng)計,繪制了下面兩幅不完整的統(tǒng)計圖(如圖).請你根據(jù)圖中提供的信息,回答下列問題:

1)扇形統(tǒng)計圖中a=____ ___,參加調(diào)查的八年級學生人數(shù)為___ __人;

2)根據(jù)圖中信息,補全條形統(tǒng)計圖;扇形統(tǒng)計圖中活動時間為4的扇形所對應的圓心角的度數(shù)為____ ___

3)如果全市共有八年級學生6000人,請你估計活動時間不少于4的大約有多少人.

【答案】(1)25﹪,200 (2) 108°(3) 4500

【解析】

1)扇形統(tǒng)計圖中,根據(jù)單位1減去其他的百分比即可求出a的值;由參加實踐活動為2天的人數(shù)除以所占的百分比即可求出八年級學生總數(shù);

2)求出活動時間為5天和7天的總?cè)藬?shù),即可補全圖形;用活動時間為4的百分比乘以360°即可得出結(jié)果;

3)求出活動時間不少于4天的百分比之和,乘以6000即可得到結(jié)果.

1)根據(jù)題意得:a=1-5%+10%+15%+15%+30%=25%,

八年級學生總數(shù)為20÷10%=200(人);

2)活動時間為5天的人數(shù)為200×25%=50(人),活動時間為7天的人數(shù)為200×5%=10(人),

補全統(tǒng)計圖,如圖所示:

活動時間為4的扇形所對應的圓心角的度數(shù)為:360°×30%=108°

3)根據(jù)題意得:6000×30%+25%+15%+5%=4500(人),

則活動時間不少于4天的約有4500人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】希望學校修建了一棟4層的教學大樓,每層樓有6間教室,進出這棟大樓共有3道門(兩道大小相同的正門和一道側(cè)門).安全檢查中,對這3道門進行了測試:當同時開啟一道正門和一道側(cè)門時,2分鐘內(nèi)可以通過400名學生,若一道正門平均每分鐘比一道側(cè)門可多通過40名學生.

(1)求平均每分鐘一道正門和一道側(cè)門各可以通過多少名學生?

(2)檢查中發(fā)現(xiàn),緊急情況時因?qū)W生擁擠,出門的效率降低20%.安全檢查規(guī)定:在緊急情況下全大樓的學生應在5分鐘內(nèi)通過這3道門安全撤離.假設這棟教學大樓每間教室最多有45名學生,問:建造的這3道門是否符合安全規(guī)定?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖像與反比例函數(shù)的圖像交于第一、三象限內(nèi)的、兩點,與軸交于點,點軸負半軸上,,且四邊形是平行四邊形,點的縱坐標為.

(1)求該反比例函數(shù)和一次函數(shù)的表達式;

(2)連接,求的面積;

(3)直接寫出關于的不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠1+2=180°,∠B=3,∠BCD=80°,求∠ADC的度數(shù).

解:∵∠1+2=180°,(已知)

.(

∴∠B=DEC.(

∵∠B=3,(已知)

ADBC,(

(兩直線平行,同旁內(nèi)角互補)

∵∠BCD=80°,

∴∠ADC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場對今年端午節(jié)這天銷售A、B、C三種品牌粽子的情況進行統(tǒng)計,并繪制出了如圖1和圖2所示的統(tǒng)計圖,根據(jù)圖中信息解答下列問題:

(1)這天共銷售了多少個粽子?

(2)銷售B品牌粽子多少個?并補全圖1中的條形圖;

(3)求出A品牌粽子在圖2中所對應的圓心角的度數(shù);

(4)根據(jù)上述統(tǒng)計信息,明年端午節(jié)期間該商場對A、B、C三種品牌的粽子如何進貨?請你提一條合理化的建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分8分)某商家預測一種應季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應求.商家又用28800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.

1)該商家購進的第一批襯衫是多少件?

2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下一個四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個菱形,又剩下一個四邊形,稱為第二次操作;依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準菱形.如圖,ABCD中,若AB=1,BC=2,則ABCD1階準菱形.

1)判斷與推理:

①鄰邊長分別為23的平行四邊形是 階準菱形;

②小明為了剪去一個菱形,進行了如下操作:如圖,把ABCD沿BE折疊(點EAD上),使點A落在BC邊上的點F,得到四邊形ABFE.請證明四邊形ABFE是菱形.

2)操作、探究與計算:

①已知ABCD的鄰邊長分別為1aa1),且是3階準菱形,請畫出ABCD及裁剪線的示意圖,并在圖形下方寫出a的值;

②已知ABCD的鄰邊長分別為abab),滿足a=6b+r,b=5r,請寫出ABCD是幾階準菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用一塊邊長為60cm的正方形薄鋼片制作一個長方體盒子.

(1)如果要做成一個沒有蓋的長方體盒子,可先在薄鋼片的四個角上截去四個相同的小正方形,然后把四邊折合起來(如圖所示).設小正方形的邊長為xcm,當做成盒子的底面積為900cm2時,求該盒子的高;

(2)如果要做成一個有蓋的長方體盒子,其制作方案要求同時符合下列兩個條件:

①必須在薄鋼片四個角上各截去一個四邊形(其余部分不能裁截);

②折合后薄鋼片既無空隙又不重疊地圍成各盒面.

請你畫出符合上述制作方案的一種草圖,并求當?shù)酌娣e為800cm2時,該盒子的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的頂點為M(﹣2,﹣4),與x軸交于A、B兩點,且A(﹣6,0),與y軸交于點C.

(1)求拋物線的函數(shù)解析式;

(2)求△ABC的面積;

(3)能否在拋物線第三象限的圖象上找到一點P,使△APC的面積最大?若能,請求出點P的坐標;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案