【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)間連線為邊的三角形稱為“格點(diǎn)三角形”,圖中的△ABC就是格點(diǎn)三角形,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)C的坐標(biāo)為(0,﹣1).
(1)在如圖的方格紙中把△ABC以點(diǎn)O為位似中心擴(kuò)大,使放大前后的位似比為1:2,畫出△A1B2C2(△ABC與△A1B2C2在位似中心O點(diǎn)的兩側(cè),A,B,C的對(duì)應(yīng)點(diǎn)分別是A1 , B2 , C2).
(2)利用方格紙標(biāo)出△A1B2C2外接圓的圓心P,P點(diǎn)坐標(biāo)是⊙P的半徑= . (保留根號(hào))
【答案】
(1)
解:如圖,△A1B2C2為所作
(2)(3,1);
【解析】解: (2)點(diǎn)P的坐標(biāo)為(3,1),
PA1= = ,
即⊙P的半徑為 .
故答案為(3,1), .
(1)利用關(guān)于原點(diǎn)為位似中心的兩圖形的對(duì)應(yīng)的坐標(biāo)關(guān)系寫出點(diǎn)A1 , B2 , C2的坐標(biāo),然后描點(diǎn)即可得到△A1B2C2;(2)利用網(wǎng)格特點(diǎn),作A1C2和C2B2的垂值平分線得到△A1B2C2外接圓的圓心P,然后寫出P點(diǎn)坐標(biāo)和計(jì)算PA1 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(﹣1,0),C(1,4),點(diǎn)B在x軸上,且AB=3.
(1)求點(diǎn)B的坐標(biāo);
(2)求△ABC的面積;
(3)在y軸上是否存在點(diǎn)P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形的面積為10?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等邊三角形ABC的邊長(zhǎng)為6,在AC,BC邊上各取一點(diǎn)E、F,連接AF,BE相交于點(diǎn)P,若AE=CF,則∠APB=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上 A點(diǎn)表示的數(shù)是 a ,B 點(diǎn)表示的數(shù)是b ,且 ab滿足|a 8|b-220.動(dòng)線段 CD=4(點(diǎn) D 在點(diǎn) C 的右側(cè)),從點(diǎn) C與點(diǎn) A重合的位置出發(fā),以每秒 2 個(gè)單位的速度向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為 t秒.
(1)求a,b的值, 運(yùn)動(dòng)過程中,點(diǎn) D 表示的數(shù)是多少,(用含有 t 的代數(shù)式表示)
(2)在 B、C、D 三個(gè)點(diǎn)中,其中一個(gè)點(diǎn)是另外兩個(gè)點(diǎn)為端點(diǎn)的線段的中點(diǎn),求 t 的值;
(3)當(dāng)線段 CD 在線段 AB上(不含端點(diǎn)重合)時(shí),如圖,圖中所有線段的和記作為 S, 則 S的值是否隨時(shí)間 t 的變化而變化?若變化,請(qǐng)說明理由;若不變,請(qǐng)求出 S值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從①∠1=∠2;②∠C=∠D;③∠A=∠F三個(gè)條件中選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論所組成的命題中,正確命題的個(gè)數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列解答過程:如圖甲,AB∥CD,探索∠P與∠A,∠C之間的關(guān)系.
解:過點(diǎn)P作PE∥AB.
∵AB∥CD,
∴PE∥AB∥CD(平行于同一條直線的兩條直線互相平行).
∴∠1+∠A=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),
∠2+∠C=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).
∴∠1+∠A+∠2+∠C=360°.
又∵∠APC=∠1+∠2,
∴∠APC+∠A+∠C=360°.
如圖乙和圖丙,AB∥CD,請(qǐng)根據(jù)上述方法分別探索兩圖中∠P與∠A,∠C之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點(diǎn)C和D,點(diǎn)P是直線CD上的一個(gè)動(dòng)點(diǎn)。
(1)如果點(diǎn)P運(yùn)動(dòng)到C、D之間時(shí),試探究∠PAC,∠APB,∠PBD之間的關(guān)系,并說明理由。
(2)若點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(P點(diǎn)與點(diǎn)C、D不重合),∠PAC,∠APB,∠PBD之間 的關(guān)系是否發(fā)生改變?請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了組織一個(gè)50人的旅游團(tuán)開展“鄉(xiāng)間民俗”游,旅游團(tuán)住村民家,住宿客房有三人間、二人間、單人間三種,收費(fèi)標(biāo)準(zhǔn)是三人間每人每晚20元,二人間每人每晚30元,單人間每人每晚50元,旅游團(tuán)共住20間客房,旅游團(tuán)如何安排住宿才能夠使得住宿費(fèi)最低,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com