【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)按如圖所示的方式疊放在一起(其中,,),固定三角板,另一三角板的邊從邊開(kāi)始繞點(diǎn)順時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的角度為.
(1)當(dāng)時(shí);
①若,則的度數(shù)為 ;
②若,求的度數(shù);
(2)由(1)猜想與的數(shù)量關(guān)系,并說(shuō)明理由;
(3)當(dāng)時(shí),這兩塊三角尺是否存在一組邊互相垂直?若存在,請(qǐng)直接寫(xiě)出所有可能的值,并指出哪兩邊互相垂直(不必說(shuō)明理由);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)①150°;②50°;(2)∠ACB+∠DCE=180°,理由見(jiàn)詳解;(3)當(dāng)=30°時(shí),AD⊥CE,當(dāng)=90°時(shí),AC⊥CE,當(dāng)=75°時(shí),AD⊥BE,當(dāng)=45°時(shí),CD⊥BE.
【解析】
(1)①先根據(jù)直角三角板的性質(zhì)求出∠DCB的度數(shù),進(jìn)而可得出∠ACB的度數(shù);②由∠ACB=130°,∠ACD=90°,可得出∠DCB的度數(shù),進(jìn)而得出∠DCE的度數(shù);
(2)根據(jù)(1)中的結(jié)論可提出猜想,再分3種情況:①當(dāng)時(shí),②當(dāng)時(shí),③當(dāng)時(shí),分別證明∠ACB與∠DCE的數(shù)量關(guān)系,即可;
(3)分4種情況:①若AD⊥CE時(shí),②若AC⊥CE時(shí), ③若AD⊥BE時(shí),④若CD⊥BE時(shí),分別求出的值,即可.
(1)①∵∠ECB=90°,∠DCE=30°,
∴∠DCB=90°30°=60°,
∴∠ACB=∠ACD+∠DCB=90°+60°=150°,
故答案是150°;
②∵∠ACB=130°,∠ACD=90°,
∴∠DCB=130°90°=40°,
∴∠DCE=90°40°=50°;
(2)∠ACB+∠DCE=180°,理由如下:
①當(dāng)時(shí),如圖1,
∵∠ACB=∠ACD+∠DCB=90°+∠DCB,
∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+90°=180°;
②當(dāng)時(shí),如圖2,∠ACB+∠DCE=180°,顯然成立;
③當(dāng)時(shí),如圖3,∠ACB+∠DCE=360°-90°-90°=180°.
綜上所述:∠ACB+∠DCE=180°;
(3)存在,理由如下:
①若AD⊥CE時(shí),如圖4,則=90°-∠A=90°-60°=30°,
②若AC⊥CE時(shí),如圖5,則=∠ACE=90°,
③若AD⊥BE時(shí),如圖6,則∠EMC=90°+30°=120°,
∵∠E=45°,
∴∠ECD=180°-45°-120°=15°,
∴=90°-15°=75°,
④若CD⊥BE時(shí),如圖7,則AC∥BE,
∴=∠E=45°.
綜上所述:當(dāng)=30°時(shí),AD⊥CE,當(dāng)=90°時(shí),AC⊥CE,當(dāng)=75°時(shí),AD⊥BE,當(dāng)=45°時(shí),CD⊥BE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線(xiàn),E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線(xiàn)交BE的延長(zhǎng)線(xiàn)于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,BC邊上有一點(diǎn)E,BE=4,將紙片折疊,使A點(diǎn)與E點(diǎn)重合,折痕MN交AD于M點(diǎn),則線(xiàn)段AM的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①,在△ABC中,∠ABC、∠ACB的平分線(xiàn)相交于點(diǎn)O,∠A=40°,求∠BOC的度數(shù);
(2)如圖②,△A′B′C′的外角平分線(xiàn)相交于點(diǎn)O′,∠A′=40°,求∠B′O′C′的度數(shù);
(3)上面(1)(2)兩題中的∠BOC與∠B′O′C′ 有怎樣的數(shù)量關(guān)系?若∠A=∠A′=n°,∠BOC與∠B′O′C′ 是否還具有這樣的關(guān)系?這個(gè)結(jié)論你是怎樣得到的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,點(diǎn)滿(mǎn)足,軸于點(diǎn).
(1)點(diǎn)的坐標(biāo)為 ,點(diǎn)的坐標(biāo)為 ;
(2)如圖1,若點(diǎn)在軸上,連接,使,求出點(diǎn)的坐標(biāo);
(3)如圖2,是線(xiàn)段所在直線(xiàn)上一動(dòng)點(diǎn),連接,平分,交直線(xiàn)于點(diǎn),作,當(dāng)點(diǎn)在直線(xiàn)上運(yùn)動(dòng)過(guò)程中,請(qǐng)?zhí)骄?/span>與的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=﹣x2+2x+2
(1)求該拋物線(xiàn)的對(duì)稱(chēng)軸、頂點(diǎn)坐標(biāo)以及y隨x變化情況;
(2)在如圖的直角坐標(biāo)系內(nèi)畫(huà)出該拋物線(xiàn)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是正方形,△AEF是等邊三角形,E,F(xiàn)分別位于DC邊和BC邊上.
(1)求∠DAE的度數(shù);
(2)若正方形ABCD的邊長(zhǎng)為1,求等邊三角形AEF的面積;
(3)將△AEF繞著點(diǎn)E逆時(shí)針旋轉(zhuǎn)m(0<m<180)度,使得點(diǎn)A落在正方形ABCD的邊上,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,P為線(xiàn)段AD上的一個(gè)動(dòng)點(diǎn),PE⊥AD交直線(xiàn)BC于點(diǎn)E.
(1)若∠B=30°,∠ACB=80°,求∠E的度數(shù);
(2)當(dāng)P點(diǎn)在線(xiàn)段AD上運(yùn)動(dòng)時(shí),猜想∠E與∠B、∠ACB的數(shù)量關(guān)系,寫(xiě)出結(jié)論無(wú)需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,連接AC,拋物線(xiàn)y=x2﹣4x﹣2經(jīng)過(guò)A,B兩點(diǎn).
(1)求A點(diǎn)坐標(biāo)及線(xiàn)段AB的長(zhǎng);
(2)若點(diǎn)P由點(diǎn)A出發(fā)以每秒1個(gè)單位的速度沿AB邊向點(diǎn)B移動(dòng),1秒后點(diǎn)Q也由點(diǎn)A出發(fā)以每秒7個(gè)單位的速度沿AO,OC,CB邊向點(diǎn)B移動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止移動(dòng),點(diǎn)P的移動(dòng)時(shí)間為t秒.
①當(dāng)PQ⊥AC時(shí),求t的值;
②當(dāng)PQ∥AC時(shí),對(duì)于拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn)H,∠HOQ>∠POQ,求點(diǎn)H的縱坐標(biāo)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com