【題目】如圖,在兩面墻之間有一個(gè)底端在A點(diǎn)的梯子,當(dāng)它靠在一側(cè)墻上時(shí),梯子的頂端在B點(diǎn);當(dāng)它靠在另一側(cè)墻上時(shí),梯子的頂端在D點(diǎn).已知∠BAC=60°,∠DAE=45°,點(diǎn)D到地面的垂直距離DE=3 m.
(1)求兩面墻之間距離CE的大小;
(2)求點(diǎn)B到地面的垂直距離BC的大小.
【答案】(1)兩面墻之間的距離CE的大小為(3+3)m;(2)點(diǎn)B到地面的垂直距離BC的大小為3 m.
【解析】
(1)在Rt△ADE中,運(yùn)用勾股定理可求出梯子的總長(zhǎng)度,然后利用勾股定理求得AC的長(zhǎng),從而求得線(xiàn)段CE的長(zhǎng);
(2)在Rt△ABC中,根據(jù)已知條件再次運(yùn)用勾股定理可求出BC的長(zhǎng).
(1)在Rt△DAE中,
因?yàn)椤?/span>DAE=45°,DE=3 m,
所以AE=DE=3 m,
由勾股定理,得AD2=AE2+DE2=36,
所以AD=6 m,
即梯子的總長(zhǎng)為6 m,所以AB=AD=6 m.
在Rt△ABC中,因?yàn)椤?/span>BAC=60°,
所以∠ABC=30°,所以AC=AB=3 m,
所以CE=AC+AE=(3+3)m,
所以?xún)擅鎵χg的距離CE的大小為(3+3)m.
(2)在Rt△ABC中,AB=6 m,AC=3 m,
由勾股定理,得
BC====3(m),
所以點(diǎn)B到地面的垂直距離BC的大小為3 m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)ABCD的對(duì)角線(xiàn)BD上一點(diǎn)M分別作平行四邊形兩邊的平行線(xiàn)EF與GH,那么圖中的AEMG的面積S1與HCFM的面積S2的大小關(guān)系是( )
A. S1>S2 B. S1<S2 C. S1=S2 D. 2S1=S2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人在電車(chē)路軌旁與路軌平行的路上騎車(chē)行走,他留意到每隔6分鐘有一部電車(chē)從他后面駛向前面,每隔2分鐘有一部電車(chē)從對(duì)面駛向后面.假設(shè)電車(chē)和此人行駛的速度都不變(分別為u1, u2表示),請(qǐng)你根據(jù)下面的示意圖,求電車(chē)每隔__________分鐘(用t表示)從車(chē)站開(kāi)出一部.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAD=∠CAE,AB=AD,AC=AE.且E,F(xiàn),C,D在同一直線(xiàn)上.
(1)求證:△ABC≌△ADE;
(2)若∠B=30°,∠BAC=100°,點(diǎn)F是CE的中點(diǎn),連結(jié)AF,求∠FAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P與點(diǎn)Q不重合,以點(diǎn)P為圓心作經(jīng)過(guò)Q的圓,則稱(chēng)該圓為點(diǎn)P、Q的“相關(guān)圓”
(1)已知點(diǎn)P的坐標(biāo)為(2,0) ①若點(diǎn)Q的坐標(biāo)為(0,1),求點(diǎn)P、Q的“相關(guān)圓”的面積;
②若點(diǎn)Q的坐標(biāo)為(3,n),且點(diǎn)P、Q的“相關(guān)圓”的半徑為 ,求n的值;
(2)已知△ABC為等邊三角形,點(diǎn)A和點(diǎn)B的坐標(biāo)分別為(﹣ ,0)、( ,0),點(diǎn)C在y軸正半軸上,若點(diǎn)P、Q的“相關(guān)圓”恰好是△ABC的內(nèi)切圓且點(diǎn)Q在直線(xiàn)y=2x上,求點(diǎn)Q的坐標(biāo).
(3)已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)為:A(﹣3,0)、B( ,0),C(0,4),點(diǎn)P的坐標(biāo)為(0, ),點(diǎn)Q的坐標(biāo)為(m, ),若點(diǎn)P、Q的“相關(guān)圓”與△ABC的三邊中至少一邊存在公共點(diǎn),直接寫(xiě)出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某公路檢測(cè)中心在一事故多發(fā)地帶安裝了一個(gè)測(cè)速儀,檢測(cè)點(diǎn)設(shè)在距離公路10m的A處,測(cè)得一輛汽車(chē)從B處行駛到C處所用的時(shí)間為0.9秒.已知∠B=30°,∠C=45°
(1)求B,C之間的距離;(保留根號(hào))
(2)如果此地限速為80km/h,那么這輛汽車(chē)是否超速?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB⊥BC,AB∥DC,AB,BC,CD分別為2,2,2+2,則∠BAD的度數(shù)等于( )
A. 120° B. 135° C. 150° D. 以上都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC所在平面內(nèi)找出一個(gè)點(diǎn),使它與三角形中的任意兩個(gè)頂點(diǎn)所組成的三角形都是等腰三角形。這樣的點(diǎn)一共有( )
A. 1個(gè) B. 4個(gè) C. 7個(gè) D. 10個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將九年級(jí)部分男生擲實(shí)心球的成績(jī)進(jìn)行整理,分成5個(gè)小組(x表示成績(jī),單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,并繪制出扇形統(tǒng)計(jì)圖和頻數(shù)分布直方圖(不完整).規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.
(1)這部分男生有多少人?其中成績(jī)合格的有多少人?
(2)這部分男生成績(jī)的中位數(shù)落在哪一組?扇形統(tǒng)計(jì)圖中D組對(duì)應(yīng)的圓心角是多少度?
(3)要從成績(jī)優(yōu)秀的學(xué)生中,隨機(jī)選出2人介紹經(jīng)驗(yàn),已知甲、乙兩位同學(xué)的成績(jī)均為優(yōu)秀,求他倆至少有1人被選中的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com