【題目】已知:如圖,△ABC中,AB=AC,D是BC上一點,點E、F分別在AB、AC上,BD=CF,CD=BE,G為EF的中點.
求證:(1)△BDE≌△CFD(2)DG⊥EF.
科目:初中數(shù)學 來源: 題型:
【題目】某電視臺“走基層”欄目的一位記者乘汽車赴360km外的農(nóng)村采訪,全程的前一部分為高速公路,后一部分為鄉(xiāng)村公路.若汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時間x(單位:h)之間的關系如圖所示,則下列結論正確的是【 】
(A)汽車在高速公路上的行駛速度為100km/h
(B)鄉(xiāng)村公路總長為90km
(C)汽車在鄉(xiāng)村公路上的行駛速度為60km/h
(D)該記者在出發(fā)后4.5h到達采訪地
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在研究相似問題時,甲、乙同學的觀點如下:
甲:將邊長為3、4、5的三角形按圖1的方式向外擴張,得到新三角形,它們的對應邊間距為1,則新三角形與原三角形相似.
乙:將鄰邊為3和5的矩形按圖2的方式向外擴張,得到新的矩形,它們的對應邊間距均為1,則新矩形與原矩形不相似.
對于兩人的觀點,下列說法正確的是( )
A. 兩人都對 B. 兩人都不對 C. 甲對,乙不對 D. 甲不對,乙對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解不等式組.請結合題意填空,完成本題的解答:
(1)解不等式①,得:________;
(2)解不等式②,得:________;
(3)把不等式①和②的解集在數(shù)軸上表示出來:
(4)原不等式組的解集為:________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在△ABC中,∠ACB=90°,AC=BC,AE是BC的中線,過點C作CF⊥AE于F,過B作BD⊥CB交CF的延長線于點D.
(1)求證.AE=CD;
(2)若BD=5㎝,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠C=70°,△AB′C′與△ABC 關于直線 EF對稱,∠CAF=10°,連接 BB′,則∠ABB′的度數(shù)是( )
A. 30° B. 35° C. 40° D. 45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙兩個幾何體是由一些棱長是1的正方體粘連在一起所構成的,這兩個幾何體從上面看到的形狀圖相同是“”請回答下列問題:
(1)請分別寫出粘連甲、乙兩個幾何體的正方體的個數(shù).
(2)甲、乙兩個幾何體從正面、左面、上面三個方向所看到的形狀圖中哪個不相同?請畫出這個不同的形狀圖.
(3)請分別求出甲、乙兩個幾何體的表面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個結論:①OA=OD;②AD⊥EF;③當∠BAC=90°時,四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正確的是( 。
A. ②③ B. ②④ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明.
已知,如圖所示,BCE,AFE是直線,
AB∥CD,∠1=∠2,∠3=∠4.
求證:AD∥BE
證明:∵ AB∥CD (已知)
∴ ∠4 =∠ ( )
∵ ∠3 =∠4 (已知)
∴ ∠3 =∠ ( )
∵∠1 =∠2 (已知)
∴∠1+∠CAF =∠2+ ∠CAF ( )
即:∠ =∠ .
∴ ∠3 =∠ ( )
∴ AD∥BE ( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com