【題目】已知:如圖,⊙O是△ABC的外接圓,,點D在邊BC上,AE∥BC,AE=BD.

(1)求證:AD=CE;

(2)如果點G在線段DC上(不與點D重合),且AG=AD,求證:四邊形AGCE是平行四邊形.

【答案】(1)證明見解析;(2)證明見解析.

【解析】

試題分析:(1)根據(jù)等弧所對的圓周角相等,得出∠B=∠ACB,再根據(jù)全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;

(2)連接AO并延長,交邊BC于點H,由等腰三角形的性質(zhì)和外心的性質(zhì)得出AH⊥BC,再由垂徑定理得BH=CH,得出CG與AE平行且相等.

試題解析:(1)在⊙O中,∵,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,AB=CA,B=EAC,BD=AE,∴△ABD≌△CAE(SAS),∴AD=CE;

(2)連接AO并延長,交邊BC于點H,∵,OA為半徑,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四邊形AGCE是平行四邊形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組 ,并把不等式①和②的解集在同一數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,D是BC邊上一點,以DB為直徑的⊙O經(jīng)過AB的中點E,交AD的延長線于點F,連結(jié)EF.

(1)求證:∠1=∠F;

(2)若sinB=,EF=,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上的點A表示的數(shù)為6,點B表示的數(shù)為﹣4,點C到點A、點B的距離相等,動點P從點B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為 x ( x 大于0)秒.

(1)點C表示的數(shù)是;
(2)當 秒時,點P到達點A處?
(3)運動過程中點P表示的數(shù)是(用含字母 的式子表示);
(4)當P,C之間的距離為2個單位長度時,求 x 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O為△ABC的外接圓,圓心O在AB上.

(1)在圖1中,用尺規(guī)作圖作∠BAC的平分線AD交⊙O于D(保留作圖痕跡,不寫作法與證明);

(2)如圖2,設(shè)∠BAC的平分線AD交BC于E,⊙O半徑為5,AC=4,連接OD交BC于F.

①求證:OD⊥BC;

②求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E,F(xiàn)在函數(shù)y= (x>0)的圖象上,直線EF分別與x軸、y軸交于點A,B,且BE:BF=1:m.過點E作EP⊥y軸于P,已知△OEP的面積為1,則k值是 , △OEF的面積是(用含m的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為( )(精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)

A.30.6 B.32.1 C.37.9 D.39.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用配方法解一元二次方程x2﹣6x﹣8=0,下列變形正確的是(  )

A. (x﹣6)2=﹣8+36 B. (x﹣6)2=8+36 C. (x﹣3)2=8+9 D. (x﹣3)2=﹣8+9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題正確的是(
A.三點確定一個圓
B.平分弦的直徑垂直于弦
C.等圓中相等的圓心角所對的弧相等
D.圓周角的度數(shù)等于圓心角度數(shù)的一半

查看答案和解析>>

同步練習冊答案