【題目】如圖,已知數(shù)軸上的點(diǎn)A表示的數(shù)為6,點(diǎn)B表示的數(shù)為﹣4,點(diǎn)C到點(diǎn)A、點(diǎn)B的距離相等,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為 x ( x 大于0)秒.
(1)點(diǎn)C表示的數(shù)是;
(2)當(dāng) 秒時(shí),點(diǎn)P到達(dá)點(diǎn)A處?
(3)運(yùn)動(dòng)過(guò)程中點(diǎn)P表示的數(shù)是(用含字母 的式子表示);
(4)當(dāng)P,C之間的距離為2個(gè)單位長(zhǎng)度時(shí),求 x 的值.
【答案】
(1)1
(2)5
(3)?4+2x
(4)解:①當(dāng)點(diǎn)P在點(diǎn)C左邊時(shí),
∵P、C之間的距離為2個(gè)單位長(zhǎng)度,
∴點(diǎn)P表示的數(shù)為-1,
∴2x-4=-1,
∴x=.
②當(dāng)點(diǎn)P在點(diǎn)C右邊時(shí),
∵P、C之間的距離為2個(gè)單位長(zhǎng)度,
∴點(diǎn)P表示的數(shù)為3,
∴2x-4=3,
∴x=.
綜上所述:當(dāng)x=或時(shí),P,C之間的距離為2個(gè)單位長(zhǎng)度.
【解析】解:(1)∵點(diǎn)C到點(diǎn)A、點(diǎn)B的距離相等,
∴C為AB的中點(diǎn),
∴點(diǎn)C表示的數(shù)為:=1.
所以答案是:1.
(2)依題可得:
AB=6-(-4)=10,
∴10÷2=5(秒).
答:但x為5秒時(shí),點(diǎn)P到達(dá)點(diǎn)A處.
(3)依題可得:
運(yùn)動(dòng)過(guò)程中點(diǎn)P表示的數(shù)為:-4+2x.
所以答案是:2x-4.
【考點(diǎn)精析】本題主要考查了數(shù)軸的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用兩種方法證明“三角形的外角和等于360°”.
如圖,∠BAE、∠CBF、∠ACD是△ABC的三個(gè)外角.
求證∠BAE+∠CBF+∠ACD=360°.
證法1:∵ ,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°
∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).
∵ ,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.
請(qǐng)把證法1補(bǔ)充完整,并用不同的方法完成證法2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象都經(jīng)過(guò)點(diǎn)A(m,2).
(1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)設(shè)一次函數(shù)的圖象與x軸交于點(diǎn)B,若點(diǎn)P是x軸上一點(diǎn),且滿足△ABP的面積是2,直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若正比例函數(shù)y=kx(k為常數(shù),且k≠0)的函數(shù)值y隨著x的增大而減小,則k的值可以是 . (寫(xiě)出一個(gè)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某物流公司要把3000噸貨物從M市運(yùn)到W市.(每日的運(yùn)輸量為固定值)
(1)從運(yùn)輸開(kāi)始,每天運(yùn)輸?shù)呢浳飮崝?shù)y(單位:噸)與運(yùn)輸時(shí)間x(單位:天)之間有怎樣的函數(shù)關(guān)系式?
(2)因受到沿線道路改擴(kuò)建工程影響,實(shí)際每天的運(yùn)輸量比原計(jì)劃少20%,以致推遲1天完成運(yùn)輸任務(wù),求原計(jì)劃完成運(yùn)輸任務(wù)的天數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,A是的中點(diǎn),AE⊥AC于A,與⊙O及CB的延長(zhǎng)線交于點(diǎn)F、E,且.
(1)求證:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,⊙O是△ABC的外接圓,,點(diǎn)D在邊BC上,AE∥BC,AE=BD.
(1)求證:AD=CE;
(2)如果點(diǎn)G在線段DC上(不與點(diǎn)D重合),且AG=AD,求證:四邊形AGCE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是半徑為1的圓O直徑,C是圓上一點(diǎn),D是BC延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)D的直線交AC于E點(diǎn),且△AEF為等邊三角形.
(1)求證:△DFB是等腰三角形;
(2)若DA=AF,求證:CF⊥AB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com