【題目】為了擴(kuò)大內(nèi)需,讓惠于農(nóng)民,豐富農(nóng)民的業(yè)余生活,鼓勵(lì)送彩電下鄉(xiāng),國家決定對購買彩電的農(nóng)戶實(shí)行政府補(bǔ)貼.規(guī)定每購買一臺彩電,政府補(bǔ)貼若干元,經(jīng)調(diào)查某商場銷售彩電臺數(shù)y(臺)與補(bǔ)貼款額x(元)之間大致滿足如圖①所示的一次函數(shù)關(guān)系.隨著補(bǔ)貼款額x的不斷增大,銷售量也不斷增加,但每臺彩電的收益z(元)會相應(yīng)降低且z與x之間也大致滿足如圖②所示的一次函數(shù)關(guān)系.

(1)在政府未出臺補(bǔ)貼措施前,該商場銷售彩電的總收益額為多少元?
(2)在政府補(bǔ)貼政策實(shí)施后,分別求出該商場銷售彩電臺數(shù)y和每臺家電的收益z與政府補(bǔ)貼款額x之間的函數(shù)關(guān)系式;
(3)要使該商場銷售彩電的總收益w(元)最大,政府應(yīng)將每臺補(bǔ)貼款額x定為多少并求出總收益w的最大值.

【答案】
(1)解:該商場銷售家電的總收益為

800×200=160000(元)


(2)解:根據(jù)題意設(shè)

y=k1x+800,Z=k2x+200

∴400k1+800=1200,200k2+200=160

解得k1=1,k2=﹣

∴y=x+800,Z=﹣ x+200


(3)解:W=yZ=(x+800)(﹣ x+200)=﹣ x2+40x+160000

=﹣ (x﹣100)2+162000.

∵﹣ <0,

∴W有最大值.

當(dāng)x=100時(shí),W最大=162000

∴政府應(yīng)將每臺補(bǔ)貼款額x定為100元,總收益有最大值

其最大值為162000元.


【解析】(1)找出圖像與縱軸的交點(diǎn),透徹理解其含義,收益=每臺收益 銷量;(2)由圖像可求出每條直線上兩點(diǎn)坐標(biāo),利用待定系數(shù)法求出解析式即可;(3)根據(jù)“收益=每臺收益 銷量”可得出W=yZ=(x+800)(﹣ x+200)化為頂點(diǎn)式,求出最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一個(gè)平面圖形,通過兩種不同的方法計(jì)算它的面積,可以得到一個(gè)關(guān)于整式乘法的等式.例如:計(jì)算左圖的面積可以得到等式(a+b)(a+2b)=a2+3ab+2b2

請解答下列問題:

1)觀察如圖,寫出所表示的等式:      ;

2)已知上述等式中的三個(gè)字母ab,c可取任意實(shí)數(shù),若a7x5,b=﹣4x+2c=﹣3x+4,且a2+b2+c237,請利用(1)所得的結(jié)論求ab+bc+ac的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么關(guān)于此二次函數(shù)的下列四個(gè)結(jié)論:①a+b+c<0;②c>1;③b2﹣4ac>0;④2a﹣b<0,其中正確的結(jié)論有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】推理填空:如圖:

①若∠1=2,則

若∠DAB+ABC=180°,則

②當(dāng) 時(shí),∠ C+ABC=180°(

當(dāng) 時(shí),∠3=C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題:計(jì)算
(1)計(jì)算:( 1﹣3tan30°+(1﹣π)0
(2)解分式方程: = ﹣1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中:①過一點(diǎn)有且只有一條直線與已知直線平行;②過一點(diǎn)有且只有一條直線與已知直線垂直;③垂直于同一直線的兩條直線互相平行;④平行于同一直線的兩條直線互相平行;⑤兩條直線被第三條直線所截,如果同旁內(nèi)角相等,那么這兩條直線互相平行;⑥連結(jié)、兩點(diǎn)的線段就是兩點(diǎn)之間的距離,其中正確的有(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程kx2+4x+3=0有實(shí)數(shù)根,則k的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某海域有A,B,C三艘船正在捕魚作業(yè),C船突然出現(xiàn)故障,向A,B兩船發(fā)出緊急求救信號,此時(shí)B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏東33°方向,同時(shí)又位于B船的北偏東78°方向.

(1)求∠ABC的度數(shù);
(2)A船以每小時(shí)30海里的速度前去救援,問多長時(shí)間能到出事地點(diǎn).(結(jié)果精確到0.01小時(shí)).
(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn) O 在直線 AB 上,OCOD,∠EDO 與∠1 互余.

(1)求證:ED//AB;

(2)OF 平分∠COD DE 于點(diǎn) F,若OFD=70,補(bǔ)全圖形,并求∠1 的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案