【題目】已知拋物線

1)如何將拋物線平移得到拋物線?

2)如圖1,拋物線軸正半軸交于點(diǎn),直線經(jīng)過點(diǎn),交拋物線于另一點(diǎn).請(qǐng)你在線段上取點(diǎn),過點(diǎn)作直線軸交拋物線于點(diǎn),連接

①若,求點(diǎn)的橫坐標(biāo)

②若,直接寫出點(diǎn)的橫坐標(biāo)

3)如圖2,的頂點(diǎn)、在拋物線上,點(diǎn)在點(diǎn)右邊,兩條直線、與拋物線均有唯一公共點(diǎn),、均與軸不平行.若的面積為2,設(shè)、兩點(diǎn)的橫坐標(biāo)分別為,求的數(shù)量關(guān)系

【答案】(1)見解析;(2)①點(diǎn)的橫坐標(biāo)為..3.

【解析】

(1)根據(jù)兩個(gè)拋物線的頂點(diǎn)坐標(biāo)即可確定平移方式;

(2)①如圖1,設(shè)拋物線軸交于點(diǎn),直線軸交于點(diǎn),確定出點(diǎn)AC、D的坐標(biāo),進(jìn)而由,軸,可得,兩點(diǎn)關(guān)于軸對(duì)稱,設(shè)關(guān)于軸的對(duì)稱點(diǎn)為,從而可得直線的解析式為,繼而解方程組即可求得答案;

如圖2,設(shè)P,Q,分別表示出PQ長,AP2,再根據(jù)AP=PQ,得到關(guān)于m的方程,解方程即可求得答案;

(3)如圖3,分別求出直線NE、NE、MN的解析式,作軸交點(diǎn),表示出EF的長,繼而根據(jù)三角形面積公式進(jìn)行求解即可.

(1)拋物線的頂點(diǎn)坐標(biāo)是(1,-4),

拋物線的頂點(diǎn)坐標(biāo)是(00),

所以將先向左平移1個(gè)單位長度,再向上平移4個(gè)單位長度得到或?qū)?/span>先向上平移4個(gè)單位長度,再向左平移1個(gè)單位長度得到

(2)①如圖1,設(shè)拋物線軸交于點(diǎn),直線軸交于點(diǎn),

,

當(dāng)x=0時(shí),y=-3,

當(dāng)y=0時(shí),x=-1x=3,

,,

直線經(jīng)過,,

,軸,,兩點(diǎn)關(guān)于軸對(duì)稱,

設(shè)關(guān)于軸的對(duì)稱點(diǎn)為,則,

直線的解析式為

,得,,

,

,

點(diǎn)的橫坐標(biāo)為

如圖2,

設(shè)P,Q

則有PQ=-=-m2+m+7,

又∵A(3,0),

AP2=(3-m)2+()2=,

AP=PQ

(-m2+m+7)2=,

[(m-3)(3m+7)]2=

(m-3)2(3m+7)2=25(m-3)2,

m3

(3m+7)2=25,

∴m1=-m2=-4(舍去),

∴m=-

(3)如圖3,

,,

設(shè)直線的解析式為

,,

得,

依題意有,,,

直線的解析式為,

同理,直線的解析式為,

得,,

,,

直線的解析式為,

軸交點(diǎn),則

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在反比例函數(shù)y= 的圖象上有一動(dòng)點(diǎn)A,連接AO并延長交圖象的另一支于點(diǎn)B,在第二象限內(nèi)有一點(diǎn)C,滿足AC=BC,當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí),點(diǎn)C始終在函數(shù)y= 的圖象上運(yùn)動(dòng),若tanCAB=2,則k的值為(

A. ﹣3 B. ﹣6 C. ﹣9 D. ﹣12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校初二和初三兩個(gè)年級(jí)各有600名同學(xué),為了科普衛(wèi)生防疫知識(shí),學(xué)校組織了一次在線知識(shí)競(jìng)賽,小宇分別從初二、初三兩個(gè)年級(jí)隨機(jī)抽取了40名同學(xué)的成績(百分制),并對(duì)數(shù)據(jù)(成績)進(jìn)行整理、描述和分析,下面給出了部分信息.

.初二、初三年級(jí)學(xué)生知識(shí)競(jìng)賽成績不完整的頻數(shù)分布直方圖如下(數(shù)據(jù)分成5組:,,,,):

.初二年級(jí)學(xué)生知識(shí)競(jìng)賽成績?cè)?/span>這一組的數(shù)據(jù)如下:

80 80 81 83 83 84 84 85 86 87 88 89 89

.初二、初三學(xué)生知識(shí)競(jìng)賽成績的平均數(shù)、中位數(shù)、方差如下:

平均數(shù)

中位數(shù)

方差

初二年級(jí)

80.8

96.9

初三年級(jí)

80.6

86

153.3

根據(jù)以上信息,回答下列問題:

1)補(bǔ)全上面的知識(shí)競(jìng)賽成績頻數(shù)分布直方圖;

2)寫出表中的值;

3同學(xué)看到上述的信息后,說自己的成績能在本年級(jí)排在前40%,同學(xué)看到同學(xué)的成績后說:“很遺憾,你的成績?cè)谖覀兡昙?jí)進(jìn)不了前50%”.請(qǐng)判斷同學(xué)是________(填“初二”或“初三”)年級(jí)的學(xué),你判斷的理由是________

4)若成績?cè)?/span>85分及以上為優(yōu)秀,請(qǐng)估計(jì)初二年級(jí)競(jìng)賽成績優(yōu)秀的人數(shù)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,過⊙T外一點(diǎn)P引它的兩條切線,切點(diǎn)分別為MN,若,則稱P為⊙T的環(huán)繞點(diǎn).

(1)當(dāng)⊙O半徑為1時(shí),

①在中,⊙O的環(huán)繞點(diǎn)是___________;

②直線y=2x+bx軸交于點(diǎn)A,y軸交于點(diǎn)B,若線段AB上存在⊙O的環(huán)繞點(diǎn),求b的取值范圍;

2)⊙T的半徑為1,圓心為(0,t),以為圓心,為半徑的所有圓構(gòu)成圖形H,若在圖形H上存在⊙T的環(huán)繞點(diǎn),直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到交于點(diǎn),可推出結(jié)論:

問題解決:如圖,在中,,,.點(diǎn)內(nèi)一點(diǎn),則點(diǎn)三個(gè)頂點(diǎn)的距離和的最小值是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC,以AC為直徑的OBC于點(diǎn)D,點(diǎn)EAC延長線上一點(diǎn),且∠BAC2CDE

1)求證:DEO的切線;

2)若cosB,CE2,求DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從﹣4、3、5這三個(gè)數(shù)中,隨機(jī)抽取一個(gè)數(shù),記為a,那么,使關(guān)于x的方程x2+4x+a0有解,且使關(guān)于x的一次函數(shù)y2x+a的圖象與x軸、y軸圍成的三角形面積恰好為4的概率_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6分)某海域有A,B兩個(gè)港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達(dá)位于B港口南偏東75°方向的C處,求該船與B港口之間的距離即CB的長(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D為邊BC上一點(diǎn),且ADAB,AEBC,垂足為點(diǎn)E.過點(diǎn)DDFAB,交邊AC于點(diǎn)F,連接EFEF2BDEC

(1)求證:△EDF∽△EFC;

(2)如果,求證:ABBD

查看答案和解析>>

同步練習(xí)冊(cè)答案