【題目】閱讀材料:我們知道:如果點A.B在數(shù)軸上分別表示有理數(shù)a、b,那么A.B兩點之間的距離表示為AB,在數(shù)軸上A.B兩點之間的距離AB=|ab|.
根據(jù)上述材料,利用數(shù)軸解答下列問題:
(1)如果點A在數(shù)軸上表示2,將點A先向左平移2個單位長度,再向右移動7個單位長度,那么終點B在數(shù)軸上表示的數(shù)是___;
(2)數(shù)軸上表示x和1的兩個點之間的距離是___;
(3)若|x3|+|x+2|=7,則x的值是___;
(4)在(1)的條件下,設點P在數(shù)軸上表示的數(shù)為x,當|PA||PB|=2時,則x的值是___.
【答案】(1)3;(2)|x-1|;(3)x=4或-3;(4);
【解析】
(1)根據(jù)題意給出的定義即可求出答案.
(2)根據(jù)題意給出的定義即可求出答案.
(3)根據(jù)題意給出的定義即可求出答案.
(4)根據(jù)題意給出的定義即可求出答案.
(1)由題意可知:A=-2,
∴B=A-2+7=3
(2)由題意可知:|x-1|
(3)由題意可知:|x-3|表示數(shù)x與3的距離,
|x+2|表示數(shù)x與-2的距離,
而-2與3之間的距離為5,
故x必須在-2的左側或3的右側,
當x<-2時,
原方程化為:-(x-3)-(x+2)=7
解得:x=-3,滿足題意;
當x>3時,
原方程化為:(x-3)+(x+2)=7
解得:x=4
綜上所述,x=4或-3
(4)由|PA|-|PB|=2可知:點P必定在A的右側,
∴當-2<x<3時,
∴|PA|=|x+2|=x+2
|PB=|x-3|=3-x
∴(x+2)-(3-x)=2
∴x+2-3+x=2
∴x=
當x≥3時,
∴|PA|=|x+2|=x+2
|PB=|x-3|=x-3
∴(x+2)-(x-3)=2
∴5=2,不成立
綜上所述,x=.
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD的軌道上有兩個點甲與乙,開始時甲在A處,乙在C處,它們沿著正方形軌道順時針同時出發(fā),甲的速度為每秒1cm,乙的速度為每秒5cm,已知正方形軌道ABCD的邊長為2cm,則乙在第2019次追上甲時的位置在( 。
A.AB上B.BC上C.CD上D.AD上
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為3正方形的頂點與原點重合,點在軸,軸上。反比例函數(shù)的圖象交于點,連接,.
(1)求反比例函數(shù)的解析式;
(2)過點作軸的平行線,點在直線上運動,點在軸上運動.
①若是以為直角頂點的等腰直角三角形,求的面積;
②將“①”中的“以為直角頂點的”去掉,將問題改為“若是等腰直角三角形”,的面積除了“①”中求得的結果外,還可以是______.(直接寫答案,不用寫步驟)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線 (a、b、c是常數(shù),)的對稱軸為直線.
(1) b=______;(用含a的代數(shù)式表示)
(2)當時,若關于x的方程在的范圍內有解,求c的取值范圍;
(3)若拋物線過點(,),當時,拋物線上的點到x軸距離的最大值為4,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:一個自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱它為“下滑數(shù)”(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個,恰好是“下滑數(shù)”的概率為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以坐標原點O為圓心,2為半徑畫圓,P是⊙O上一動點且在第一象限內,過點P作⊙O的切線,與x、y軸分別交于點A、B.
(1)求證:△OBP與△OPA相似;
(2)當點P為AB中點時,求出P點坐標;
(3)在⊙O上是否存在一點Q,使得以Q,O,A、P為頂點的四邊形是平行四邊形.若存在,試求出Q點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】重慶育才中學需要為老校友們訂制周年紀念吉祥物“陶娃”,原計劃訂份,每份元,訂制公司表示:如果多訂,可以優(yōu)惠.根據(jù)校慶當天前來的校友數(shù)量,學校最終訂了份,并按原價八折購買,但訂制公司獲得了同樣的利潤.
(1)求訂制公司生產(chǎn)每套“陶娃”的成本;
(2)求訂制公司獲得的利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸上有、、三個點,分別表示有理數(shù)、、,兩條動線段和,,,如圖,線段以每秒個單位的速度從點開始一直向右勻速運動,線段同時以每秒個單位的速度從點開始向右勻速運動,當點運動到時,線段立即以相同的速度返回,當點運動到點時,線段、立即同時停止運動,設運動時間為秒(整個運動過程中,線段和保持長度不變,且點總在點的左邊,點總在點的左邊)
(1)當為何值時,點和點重合?
(2)在整個運動過程中,線段和重合部分長度能否為,若能,請求出此時點表示的數(shù);若不能,請說明理.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com