【題目】如圖,在△ABC中,ADBC邊上的中線,EAD的中點,過點ABC的平行線交BE的延長線于點F,連接CF.

(1) 求證:AF=DC;

(2) ACAB,試判斷四邊形ADCF的形狀,并說明理由;

(3) 當△ABC滿足什么條件時,四邊形ADCF是正方形?請說明理由.

【答案】(1)證明見解析(2)四邊形ADCF是菱形(3)當AB=AC且∠BAC=90°時,四邊形ADCF是正方形

【解析】

(1)連接DF,由AAS證明△AFE≌△DBE,得出AF=BD,即可得出答案;
(2)根據(jù)平行四邊形的判定得出平行四邊形ADCF,求出AD=CD,根據(jù)菱形的判定得出即可;
(3)根據(jù)等腰三角形性質(zhì)求出AD⊥BC,得出∠ADC=90°,根據(jù)正方形的判定得出即可.

(1)證明:連接DF,

EAD的中點,

AE=DE,

AFBC,

∴∠AFE=DBE,

在△AFE和△DBE中,

AFE=DBE,FEA=DEB,AE=DE

∴△AFE≌△DBE(AAS),

EF=BE

AE=DE,

∴四邊形AFDB是平行四邊形,

BD=AF

AD為中線,

DC=BD

AF=DC;

(2)四邊形ADCF的形狀是菱形,理由如下:

AF=DC,AFBC,

∴四邊形ADCF是平行四邊形,

ACAB,

∴∠CAB=90°,

AD為中線,

AD=BC=DC,

∴平行四邊形ADCF是菱形;

(3)當△ABC滿足AC=AB且∠BAC=90°時,四邊形ADCF為正方形,理由如下:

∵∠CAB=90°,AC=ABAD為中線,

ADBC,

∴∠ADC=90°,

∵四邊形ADCF是菱形,

∴四邊形ADCF是正方形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在干燥的路面上,使車子停止前進所需的剎車距離s(m)與車速v(km/h)的關(guān)系是s=v+v2 .

(1)v分別是48,64時,求相應的剎車距離s的值;

(2)司機小李正以72km/h的速度行駛,突然發(fā)現(xiàn)前方大約60m處有一不明障礙物,他立即剎車,車會撞上障礙物嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形MNPQ中,動點R從點N出發(fā),沿著N→P→Q→M方向運動至點M處停止,設點R運動的路程為x,MNR的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則下列說法不正確的是(

A.當x=2時,y=5

B.矩形MNPQ的面積是20

C.當x=6時,y=10

D.當y=時,x=10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=8, AC=10D點在AC上,ABCD,E、F分別是BC、AD的中點,連結(jié)EF并延長,與BA的延長線交于點G,連接GD,若∠EFC60°,則EG的長為(

A. 4B. 5C. 6D. 7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分式中,在分子、分母都是整式的情況下,如果分子的次數(shù)低于分母的次數(shù),稱這樣的分式為真分式.例如,分式是,是真分式.如果分子的次數(shù)不低于分母的次數(shù),稱這樣的分式為假分式.例如,分式是假分式.一個假分式可以化為一個整式與一個真分式的和.例如,==1-

1)將假分式化為一個整式與一個真分式的和;

2)如果分式的值為整數(shù),求x的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如右圖,在中,,垂足為點,有下列說法:①點與點的距離是線段的長;②點到直線的距離是線段的長;③線段上的高;④線段上的高.

上述說法中,正確的個數(shù)為(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,MN表示一段筆直的高架道路,線段AB表示高架道路旁的一排居民樓,已知點A到MN的距離為15米,BA的延長線與MN相交于點D,且∠BDN=30°,假設汽車在高速道路上行駛時,周圍39米以內(nèi)會受到噪音(XRS)的影響.

(1)過點A作MN的垂線,垂足為點H,如果汽車沿著從M到N的方向在MN上行駛,當汽車到達點P處時,噪音開始影響這一排的居民樓,那么此時汽車與點H的距離為多少米?

(2)降低噪音的一種方法是在高架道路旁安裝隔音板,當汽車行駛到點Q時,它與這一排居民樓的距離QC為39米,那么對于這一排居民樓,高架道路旁安裝的隔音板至少需要多少米長?(精確到1米)(參考數(shù)據(jù):≈1.7)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABAD,ACAE,BCDE,點EBC上.

1)求證:△ABC≌△ADE;(2)求證:∠EAC=∠DEB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,AB=AC,DE分別在邊AB、AC上,且滿足AD=AE.下列結(jié)論中:①;②AO平分∠BAC;③OB=OC;④AOBC;⑤若,則;其中正確的有( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

同步練習冊答案