【題目】如圖,在菱形ABCD中,對角線AC,BD交于點ODEAB于點E,連接OE,若DE,BE1,則∠AOE的度數(shù)是( 。

A.30°B.45°C.60°D.75°

【答案】A

【解析】

由菱形的性質(zhì)可得ACBD,DOBO,由勾股定理可得BD2,由直角三角形的性質(zhì)可得EODOBO1,可證△BEO是等邊三角形,可得∠BOE60,即可求∠AOE的度數(shù).

解:∵四邊形ABCD是菱形,

ACBD,DOBO,

DEABDE,BE1

BD2,

DOBO1

DEBA,DOBO

EODOBO1,

BEBOEO1

∴△BEO是等邊三角形,

∴∠BOE60,

∴∠AOE=∠AOB﹣∠BOE906030

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,已知點,點,為線段上一點,且滿足

1)求直線的解析式及點的坐標;

2)如圖2,為線段上一動點,連接,交于點,試探索是否為定值?若是,求出該值;若不是,請說明理由;

3)點為坐標軸上一點,請直接寫出滿足為等腰三角形的所有點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在活動課上,小明和小紅合作用一副三角板來測量學校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7m,他調(diào)整自己的位置,設法使得三角板的一條直角邊保持水平,且斜邊與旗桿頂端M在同一條直線上,測得旗桿頂端M仰角為45°;小紅的眼睛與地面的距離(CD)是1.5m,用同樣的方法測得旗桿頂端M的仰角為30°.兩人相距28米且位于旗桿兩側(cè)(點B、N、D在同一條直線上).求出旗桿MN的高度.(參考數(shù)據(jù): ,結(jié)果保留整數(shù).)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,,垂足分別為E、DCE,BD相交于

1)若,求證:;

2)若,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某一天,小明和小亮來到一河邊,想用平面鏡和皮尺測量這條河的大致寬度,兩人在確保無安全隱患的情況下,現(xiàn)在河岸邊選擇了一點C(點C與河對岸岸邊上的一棵樹的底部點B所確定的直線垂直于河岸).小明到F點時正好在平面鏡中看到樹尖A,小亮在點D放置平面鏡,小亮到H點時正好在平面鏡中看到樹尖A,且F、D、H均在BC的延長線上,小明的眼睛距地面的高度EF=1.5m,小亮的眼睛距地面的高度GH=1.6m,測得CF=1m,DH=2m,CD=8.4m,ABBH,EFBH,GHBH,根據(jù)以上測量過程及測量數(shù)據(jù),請你求出河寬BC是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】心理學家研究發(fā)現(xiàn),一般情況下,在一節(jié)40分鐘的課中,學生的注意力指數(shù)y隨時間x(分)的變化規(guī)律如圖所示(其中AB、BC為線段,CD為雙曲線的一部分).

(1)分別求出線段AB和雙曲線CD的函數(shù)解析式,并寫出自變量的取值范圍;

(2)開始上課后第5分鐘時與第30分鐘時比較,何時學生的注意力更集中?

(3)一道數(shù)學競賽題,需要講19分鐘,為了效果較好,要求學生的注意力指數(shù)至少為36,那么經(jīng)過適當安排,老師能否在學生達到所需的狀態(tài)下講解完這道題目?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

1)在圖中作出ABC關于m(直線m上的橫坐標都為﹣2)的對稱圖形A1B1C1

2)線段上有一點P(﹣,),直接寫出點P關于直線m對稱的點的坐標   

3)線段BC上有一點Ma,b),點M關于直線m的對稱點Nc,d),請直接寫出a,c的關系:   ;b,d的關系:   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學習軸對稱的時候,老師讓同學們思考課本中的探究題.

如圖(1),要在燃氣管道l上修建一個泵站,分別向A、B兩鎮(zhèn)供氣.泵站修在管道的什么地方,可使所用的輸氣管線最短?

你可以在l上找?guī)讉點試一試,能發(fā)現(xiàn)什么規(guī)律?你可以在上找?guī)讉點試一試,能發(fā)現(xiàn)什么規(guī)律?

聰明的小華通過獨立思考,很快得出了解決這個問題的正確辦法.他把管道l看成一條直線(圖(2)),問題就轉(zhuǎn)化為,要在直線l上找一點P,使APBP的和最。淖龇ㄊ沁@樣的:

作點B關于直線l的對稱點B′

連接AB′交直線l于點P,則點P為所求.

請你參考小華的做法解決下列問題.如圖在△ABC中,點D、E分別是AB、AC邊的中點,BC=6,BC邊上的高為4,請你在BC邊上確定一點P,使△PDE得周長最。

1)在圖中作出點P(保留作圖痕跡,不寫作法).

2)請直接寫出△PDE周長的最小值:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的方格紙中,有一個以格點為頂點的ABC

1ABC的形狀是 

2)利用網(wǎng)格線畫ABC,使它與ABC關于直線l對稱.

3)在直線l上求作點P使AP+CP的值最小,則AP+CP的最小值= 

查看答案和解析>>

同步練習冊答案