【題目】在同一條道路上,甲車從地到地,乙車從地到地,乙先出發(fā),圖中的折線段表示甲、乙兩車之間的距離(千米)與行駛時間(小時)的函數(shù)關(guān)系的圖象,根據(jù)圖象解決以下問題:
(1)乙先出發(fā)的時間為 小時,乙車的速度為 千米/時;
(2)求線段的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)甲、乙兩車誰先到終點,先到多少時間?
【答案】(1)0.5;60;(2) ;(3)乙;
【解析】
(1)根據(jù)第一段圖象可以看出乙先出發(fā)0.5小時,然后利用路程÷時間=速度即可求出乙的速度;
(2)先求出甲車的速度,進而求出甲乙兩車的相遇時間,從而得到C的坐標(biāo),然后將B,C代入用待定系數(shù)法即可求值線段BC的解析式;
(3)計算發(fā)現(xiàn)乙到達終點的時間為 ,而從圖象中可知甲到達終點的時間為1.75小時,據(jù)此問題可解.
(1)根據(jù)圖象可知圖象在點B處出現(xiàn)轉(zhuǎn)折,所以前一段應(yīng)該是乙提前出發(fā)的時間
∴乙先出發(fā)0.5小時,在0.5小時內(nèi)行駛了100-70=30千米
∴乙的速度為
(2)乙從地到地所需的時間為
∴甲從地到地所需的時間為
∴甲的速度為
∴從甲車出發(fā)到甲乙兩車相遇所需的時間為
∵乙先出發(fā)0.5小時,
∴甲乙兩車相遇是在乙車出發(fā)后1小時
∴
設(shè)直線BC的解析式為
將代入解析式中得
解得
∴直線BC的解析式為
(3)乙從地到地所需的時間為,而甲是在乙出發(fā)1.75小時后到達終點的,所以乙先到終點
所以乙比甲早到
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市計劃購進一批甲、乙兩種玩具,已知件甲種玩具的進價與件乙種玩具的進價的和為元,件甲種玩具的進價與件乙種玩具的進價的和為元.
(1)求每件甲種、乙種玩具的進價分別是多少元;
(2)如果購進甲種玩具有優(yōu)惠,優(yōu)惠方法是:購進甲種玩具超過件,超出部分可以享受折優(yōu)惠,若購進件甲種玩具需要花費元,請你寫出與的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個反比例函數(shù)和在第一象限內(nèi)的圖象如圖所示,點P在的圖象上,PC⊥軸于點C,交的圖象于點A,PC⊥軸于點D,交的圖象于點B. 當(dāng)點P在的圖象上運動時,以下結(jié)論:
①
②的值不會發(fā)生變化
③PA與PB始終相等
④當(dāng)點A是PC的中點時,點B一定是PD的中點.
其中一定不正確的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=40°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一等邊三角形的三條邊各8等分,按順時針方向(圖中箭頭方向)標(biāo)注各等分點的序號0、1、2、3、4、5、6、7、8,將不同邊上的序號和為8的兩點依次連接起來,這樣就建立了“三角形”坐標(biāo)系.在建立的“三角形”坐標(biāo)系內(nèi),每一點的坐標(biāo)用過這一點且平行(或重合)于原三角形三條邊的直線與三邊交點的序號來表示(水平方向開始,按順時針方向),如點的坐標(biāo)可表示為(1,2,5),點的坐標(biāo)可表示為(4,1,3),按此方法,則點的坐標(biāo)可表示為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2,BC=5,E、P分別在AD.BC上,且DE=BP=1.連接BE,EC,AP,DP,PD與CE交于點F,AP與BE交于點H.
(1)判斷△BEC的形狀,并說明理由;
(2)判斷四邊形EFPH是什么特殊四邊形,并證明你的判斷;
(3)求四邊形EFPH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織一項球類對抗賽,在本校隨機調(diào)查了若干名學(xué)生,對他們每人最喜歡的球類運動進行了統(tǒng)計,并繪制如圖1、圖2所示的條形和扇形統(tǒng)計圖.
根據(jù)統(tǒng)計圖中的信息,解答下列問題:
(1)求本次被調(diào)查的學(xué)生人數(shù),并補全條形統(tǒng)計圖;
(2)若全校有1500名學(xué)生,請你估計該校最喜歡籃球運動的學(xué)生人數(shù);
(3)根據(jù)調(diào)查結(jié)果,請你為學(xué)校即將組織的一項球類比賽提出合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標(biāo);
(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當(dāng)△CQE的面積最大時,求點Q的坐標(biāo);
(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標(biāo)為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com