【題目】已知y是x的函數(shù),自變量x的取值范圍是x≠0的全體實數(shù),如表是y與x的幾組對應(yīng)值.
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | … | ||
y | … | ﹣ | ﹣ | ﹣ | m | … |
小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,利用上述表格所反映出的y與x之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究.下面是小華的探究過程,請補充完整:
(1)從表格中讀出,當自變量是﹣2時,函數(shù)值是 ;
(2)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應(yīng)值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;
(3)在畫出的函數(shù)圖象上標出x=2時所對應(yīng)的點,并寫出m= .
(4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì): .
【答案】(1),(2)見解析,(3)見解析,,(4)當0<x<1時,y隨x的增大而減小.
【解析】
(1)根據(jù)表中x,y的對應(yīng)值即可得到結(jié)論;
(2)按照自變量由小到大,利用平滑的曲線連結(jié)各點即可;
(3)在所畫的函數(shù)圖象上找出自變量為2所對應(yīng)的函數(shù)值即可;
(4)利用函數(shù)圖象的圖象求解.
(1)當自變量是﹣2時,函數(shù)值是;
故答案為:
(2)該函數(shù)的圖象如圖所示;
(3)當x=2時所對應(yīng)的點 如圖所示,且m=;
故答案為:;
(4)函數(shù)的性質(zhì):當0<x<1時,y隨x的增大而減。
故答案為:當0<x<1時,y隨x的增大而減。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過x軸正半軸上的任意一點P,作y軸的平行線,分別與反比例函數(shù)y=﹣和y=的圖象交于A、B兩點.若點C是y軸上任意一點,連接AC、BC,則△ABC的面積為( )
A. 3B. 4C. 5D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+mx﹣6=0.
(1)求證:不論m為何實數(shù),方程總有兩個不相等的實數(shù)根;
(2)若m=1,用配方法解這個一元二次方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A、C為半徑是8的圓周上兩動點,點B為的中點,以線段BA、BC為鄰邊作菱形ABCD,頂點D恰在該圓半徑的中點上,則該菱形的邊長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,對于任意三點A,B,C,給出如下定義:
如果矩形的任何一條邊均與某條坐標軸平行,且A,B,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,B,C的覆蓋矩形.點A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是點A,B,C的覆蓋矩形,其中矩形AB3C3D3是點A,B,C的最優(yōu)覆蓋矩形.
(1)已知A(﹣2,3),B(5,0),C(t,﹣2).
①當t=2時,點A,B,C的最優(yōu)覆蓋矩形的面積為 ;
②若點A,B,C的最優(yōu)覆蓋矩形的面積為40,求直線AC的表達式;
(2)已知點D(1,1).E(m,n)是函數(shù)y=(x>0)的圖象上一點,⊙P是點O,D,E的一個面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標分別為A(-2,3)、B(-6,0)、C(-1,0).
(1)畫出將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°圖形.
(2)填空:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,若AF=4,AB=7.
(1)求DE的長度;
(2)試猜想:直線BE與DF有何位置關(guān)系?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com