【題目】如圖,過⊙O外一點P向⊙O作兩條切線,切點分別為A,B,若⊙O半徑為2,∠APB=60°,則圖中陰影部分的面積為 .
【答案】4 ﹣ π
【解析】解:連接OA、OB,OP,如圖,
∵PA,PB是⊙O的兩條切線,
∴OA⊥AP,OB⊥PB,OP平分∠APB,
∴∠PAO=∠PBO=90°,∠APO= ×60°=30°,
∴∠AOB=180°﹣∠APB=180°﹣60°=120°,
在Rt△PAO中,∵OA=2,∠APO=30°,
∴AP= OA=2 ,
∴S△PAO= ×2×2 =2 ,
∴陰影部分的面積=S四邊形AOBP﹣S扇形AOB
=2×2 ﹣ =4 ﹣ π.
所以答案是:4 ﹣ π.
【考點精析】解答此題的關(guān)鍵在于理解切線的性質(zhì)定理的相關(guān)知識,掌握切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑,以及對扇形面積計算公式的理解,了解在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊AB在x軸上,點B與原點O重合,已知點A(﹣2,0),AC= ,將△ABC沿x軸向右平移,當(dāng)點C的對應(yīng)點C1落在直線y=2x﹣4上時,則平移的距離是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊各10人的比賽成績?nèi)缦卤?10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;
(2)計算乙隊的平均成績和方差;
(3)已知甲隊成績的方差是1.4,則成績較為整齊的是 隊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(新知理解)
如圖①,點C在線段AB上,若BC=πAC,則稱點C是線段AB的圓周率點,線段AC、BC稱作互為圓周率伴侶線段.
(1)若AC=3,求AB;
(2)若點D也是圖①中線段AB的圓周率點(不同于點C),判斷AC,BD的等量關(guān)系;
(解決問題)
如圖②,現(xiàn)有一個直徑為1個單位長度的圓片,將圓片上的某點與數(shù)軸上表示1的點重合,并把圓片沿數(shù)軸向右無滑動地滾動1周,該點到達(dá)點C的位置.
(3)若點M、N是線段OC的圓周率點,求MN的長;
(4)圖②中,若點D在射線OC上,且線段CD與以O(shè)、C、D中某兩個點為端點的線段互為圓周率伴侶線段,請直接寫出點D所表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC邊長為2,四邊形DEFG是平行四邊形,DG=2,DE=3,∠GDE=60°,BC和DE在同一條直線上,且點C與點D重合,現(xiàn)將△ABC沿D→E的方向以每秒1個單位的速度勻速運動,當(dāng)點B與點E重合時停止,則在這個運動過程中,△ABC與四邊形DEFG的重合部分的面積S與運動時間t之間的函數(shù)關(guān)系圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB是一鋼架,∠AOB=15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FG、GH…添的鋼管長度都與OE相等,則最多能添加這樣的鋼管( )根.
A. 2 B. 4 C. 5 D. 無數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,A、B在數(shù)軸上對應(yīng)的數(shù)分別用、表示,且.
(1)數(shù)軸上點A表示的數(shù)是 ,點B表示的數(shù)是
(2)若一動點P從點A出發(fā),以3個單位長度/秒速度由A向B運動;動點Q從原點O出發(fā),以1個單位長度/秒速度向B運動,點P、Q同時出發(fā),點Q運動到B點時兩點同時停止.設(shè)點Q運動時間為t秒.
①若P從A到B運動,則P點表示的數(shù)為 ,Q點表示的數(shù)為 .用含的式子表示)
②當(dāng)t為何值時,點P與點Q之間的距離為2個單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】基本模型:如圖1,點A,F(xiàn),B在同一直線上,若∠A=∠B=∠EFC=90°,易得△AFE~△BCF.
(1)模型拓展:如圖2,點A,F(xiàn),B在同一直線上,若∠A=∠B=∠EFC,求證:△AFE~△BCF;
(2)拓展應(yīng)用:如圖3,AB是半圓⊙O的直徑,弦長AC=BC=4 ,E,F(xiàn)分別是AC,AB上的一點,若∠CFE=45°,若設(shè)AE=y,BF=x,求y與x的函數(shù)關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com