【題目】在平面直角坐標系中,拋物線y=x2-4x+3與x軸交于點A 、B(點A在點B的左側(cè)),與y軸交于點C.
(1)求直線BC的表達式;
(2)垂直于y軸的直線l與拋物線交于點 ,與直線BC交于點,若x1<x2<x3,結合函數(shù)的圖象,求x1+x2+x3的取值范圍.
【答案】(1)y=-x+3;(2)7< x1+x2+x3<8.
【解析】試題(1)先求A、B、C的坐標,用待定系數(shù)法即可求解;
(2)由于垂直于y軸的直線l與拋物線要保證,則P、Q兩點必位于x軸下方,作出二次函數(shù)與一次函數(shù)圖象,找出兩條臨界直線,為x軸和過頂點的直線,繼而求解.
試題解析:(1)由拋物線 與x軸交于點A,B(點A在點B的左側(cè)),令y=0,解得x=1或x=3, ∴點A,B的坐標分別為(1,0),(3,0),
∵拋物線與y軸交于點C,令x=0,解得y=3, ∴點C的坐標為(0,3).設直線BC的表達式為y=kx+b, ∴ ,解得 ,
∴直線BC的表達式為:y=-x+3.
(2).由,
∴拋物線的頂點坐標為(2,-1),對稱軸為直線x=2,
∵ ,∴+=4.令y=-1,y=-x+3,x=4.
∵,∴3<<4, 即7<<8,
∴ 的取值范圍為:7<<8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=2x﹣4與反比例函數(shù)y=的圖象相交于點A(a,2),與x軸相交于點B.
(1)求a和k的值;
(2)以AB為邊作菱形ABCD,使點C在x軸正半軸上,點D在第一象限,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一艘輪船向正東方向航行,在A處測得燈塔P在A的北偏東60°方向,航行40海里到達B處,此時測得燈塔P在B的北偏東15°方向.
(1)求燈塔P到輪船航線的距離PD;(結果保留根號)
(2)當輪船從B處繼續(xù)向東航行時,一艘快艇從燈塔P處同時前往D處,盡管快艇速度是輪船速度的2倍,但快艇還是比輪船晚15分鐘到達D處,求輪船每小時航行多少海里.(結果精確到1海里,參考數(shù)據(jù)≈1.7)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AB=6,BC=10,AB⊥AC,點P從點B出發(fā)沿著B→A→C的路徑運動,同時點Q從點A出發(fā)沿著A→C→D的路徑以相同的速度運動,當點P到達點C時,點Q隨之停止運動,設點P運動的路程為x,y=PQ2,下列圖象中大致反映y與x之間的函數(shù)關系的是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的面積為12,BC與BC邊上的高AD之比為3:2,矩形EFGH的邊EF在BC上,點H,G分別在邊AB、AC上,且HG=2GF.
(1)求AD的長;
(2)求矩形EFGH的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:①4ac<b2;②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;③3a+c>0;④當x<0時,y隨x增大而增大,其中結論正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,O是對角線AC與BD的交點,M是BC邊上的動點點M不與B,C重合,,CN與AB交于點N,連接OM,ON,下列五個結論:≌;≌;∽;;若,則的最小值是,其中正確結論的個數(shù)是
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機地傳給其他兩人中的某一人.
(1)求兩次傳球后,球恰在B手中的概率;
(2)求三次傳球后,球恰在A手中的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com