【題目】如圖,△ABC的面積為12,BC與BC邊上的高AD之比為3:2,矩形EFGH的邊EF在BC上,點H,G分別在邊AB、AC上,且HG=2GF.
(1)求AD的長;
(2)求矩形EFGH的面積.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是( 。
A. ①②③④ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,給定銳角三角形ABC,小明希望畫正方形DEFG,使D,E位于邊BC上,F,G分別位于邊AC,AB上,他發(fā)現(xiàn)直接畫圖比較困難,于是他先畫了一個正方形HIJK,使得點H,I位于射線BC上,K位于射線BA上,而不需要求J必須位于AC上.這時他發(fā)現(xiàn)可以將正方形HIJK通過放大或縮小得到滿足要求的正方形DEFG.
閱讀以上材料,回答小明接下來研究的以下問題:
(1)如圖2,給定銳角三角形ABC,畫出所有長寬比為2:1的長方形DEFG,使D,E位于邊BC上,F,G分別位于邊AC,AB上.
(2)已知三角形ABC的面積為36,BC=12,在第(1)問的條件下,求長方形DEFG的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知銳角△ABC中,邊BC長為12,高AD長為8
(1)如圖,矩形EFGH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K
①求的值
②設EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關系式,并求S的最大值
(2)若ABAC,正方形PQMN的兩個頂點在△ABC一邊上,另兩個頂點分別在△ABC的另兩邊上,直接寫出正方形PQMN的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=x2-4x+3與x軸交于點A 、B(點A在點B的左側(cè)),與y軸交于點C.
(1)求直線BC的表達式;
(2)垂直于y軸的直線l與拋物線交于點 ,與直線BC交于點,若x1<x2<x3,結合函數(shù)的圖象,求x1+x2+x3的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點M是邊BC上的一點(不與B、C重合),點N在CD邊的延長線上,且滿足∠MAN=90°,聯(lián)結MN、AC,N與邊AD交于點E.
(1)求證:AM=AN;
(2)如果∠CAD=2∠NAD,求證:AM2=ACAE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①所示,在△ABC中,點O是AC上一點,過點O的直線與AB,BC的延長線分別相交于點M,N.
【問題引入】
(1)若點O是AC的中點, ,求的值;
溫馨提示:過點A作MN的平行線交BN的延長線于點G.
【探索研究】
(2)若點O是AC上任意一點(不與A,C重合),求證: ;
【拓展應用】
(3)如圖②所示,點P是△ABC內(nèi)任意一點,射線AP,BP,CP分別交BC,AC,AB于點D,E,F(xiàn).若, ,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是一個直角三角形的苗圃,由一個正方形花壇和兩塊直角三角形的草皮組成.如果兩個直角三角形的兩條斜邊長分別為4米和6米,則草皮的總面積為( )平方米.
A. 3 B. 9 C. 12 D. 24
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com