【題目】如圖,在平面直角坐標系中放置一直角三角板,其頂點為,,,將此三角板繞原點順時針旋轉(zhuǎn),得到.
(1)如圖,一拋物線經(jīng)過點,求該拋物線解析式;
(2)設(shè)點是在第一象限內(nèi)拋物線上一動點,求使四邊形的面積達到最大時點的坐標及面積的最大值.
【答案】解:(1)∵拋物線過
設(shè)拋物線的解析式為
又∵拋物線過,將坐標代入上解析式得:
即滿足條件的拋物線解析式為
(2)(解法一):如圖1,∵為第一象限內(nèi)拋物線上一動點,
設(shè)則
點坐標滿足
連接
=
當(dāng)時,最大.
此時,.即當(dāng)動點的坐標為時,
最大,最大面積為
(解法二):如圖2,連接 為第一象限內(nèi)拋物線上一動點,
且的面積為定值,
最大時必須最大.
∵長度為定值,∴最大時點到的距離最大.
即將直線向上平移到與拋物線有唯一交點時,
到的距離最大.
設(shè)與直線平行的直線的解析式為
聯(lián)立
得
令
解得此時直線的解析式為:
解得
∴直線與拋物線唯一交點坐標為
設(shè)與軸交于則
過作于在中,
過作于則到的距離
此時四邊形的面積最大.
∴的最大值=
【解析】
(1)由三點的坐標根據(jù)待定系數(shù)法即可求出解析式;
(2)先根據(jù)題意列出函數(shù)關(guān)系式,再根據(jù)函數(shù)關(guān)系式的特征即可得到最大值。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊中,D為邊AC的延長線上一點(),平移線段BC,使點C移動到點D,得到線段ED,M為ED的中點,過點M作ED的垂線,交BC于點F,交AC于點G.
(1)依題意補全圖形;
(2)求證:;
(3)連接DF并延長交AB于點H,用等式表示線段AH與CG的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與坐標軸分別交于A、B兩點,與反比例函數(shù)y=的圖象在第一象限的交點為C,CD⊥x軸于D,若OB=3,OD=6,△AOB的面積為3.
(1)求一次函數(shù)與反比例函數(shù)的表達式;
(2)當(dāng)x>0時,比較kx+b與的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD頂點C、D在反比例函數(shù)y=(x>0)圖象上,頂點A、B分別在x軸、y軸的正半軸上,則點C的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)興趣小組的同學(xué)們,想利用自己所學(xué)的數(shù)學(xué)知識測量學(xué)校旗桿的高度:下午活動時間,興趣小組的同學(xué)們來到操場,發(fā)現(xiàn)旗桿的影子有一部分落在了墻上(如圖所示).同學(xué)們按照以下步驟進行測量:測得小明的身高1.65米,此時其影長為2.5米;在同一時刻測量旗桿影子落在地面上的影長BC為9米,留在墻上的影高CD為2米,請你幫助興趣小組的同學(xué)們計算旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2+bx+2﹣b在自變量x的值滿足﹣1≤x≤2的情況下,若對應(yīng)的函數(shù)值y的最大值為6,則b的值為( 。
A. ﹣1或2B. 2或6C. ﹣1或4D. ﹣2.5或8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形ABCD中,AB=,BC=3,在BC邊上取兩點E、F(點E在點F的左邊),以EF為邊所作等邊△PEF,頂點P恰好在AD上,直線PE、PF分別交直線AC于點G、H.
(1)求△PEF的邊長;
(2)若△PEF的邊EF在線段CB上移動,試猜想:PH與BE有何數(shù)量關(guān)系?并證明你猜想的結(jié)論;
(3)若△PEF的邊EF在射線CB上移動(分別如圖②和圖③所示,CF>1,P不與A重合),(2)中的結(jié)論還成立嗎?若不成立,直接寫出你發(fā)現(xiàn)的新結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,G是線段AB上一點,AC和DG相交于點E.
(1)請先作出∠ABC的平分線BF,交AC于點F;(尺規(guī)作圖,保留作圖痕跡,不寫作法與證明)
(2)然后證明當(dāng):AD∥BC,AD=BC,∠ABC=2∠ADG時,DE=BF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com