【題目】如圖,正方形ABCD頂點C、D在反比例函數y=(x>0)圖象上,頂點A、B分別在x軸、y軸的正半軸上,則點C的坐標為_____.
【答案】(,2)
【解析】
要求C點的坐標,可設C點的坐標為(a,),作CE⊥y軸于E,FD⊥x軸于F,因為四邊形ABCD是正方形,容易得出△BEC、△AOB、△DFA全等,從而可以用a表示出D點的坐標,從而構建方程解出a的值,則可求出C點的坐標.
解:如圖,過點C作CE⊥y軸于E,過點D做DF⊥x軸于F,
設C(a,),則CE=a,OE=,
∵四邊形ABCD為正方形,
∴BC=AB=AD,
∵∠BEC=∠AOB=∠AFD=90°,
∴∠EBC+∠OBA=90°,∠ECB+∠EBC=90°,
∴∠ECB=∠OBA,
同理可得:∠DAF=∠OBA,
∴Rt△BEC≌Rt△AOB≌Rt△DFA,
∴OB=EC=AF=a,
∴OA=BE=FD=-a,
∴OF=a+-a=,
∴點D的坐標為(,-a),
把點D的坐標代入y=(x>0),得到(-a)=6,解得a=-(舍),或a=,
∴點C的坐標為(,2),
故答案為:(,2).
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程有實數根.
(1)求m的值;
(2)先作的圖象關于x軸的對稱圖形,然后將所作圖形向左平移3個單位長度,再向上平移2個單位長度,寫出變化后圖象的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB:y=kx﹣6(k≠0)與x軸,y軸分別交于A,B兩點,點C(1,m)在線AB上,且tan∠ABO=,把點B向上平移8個單位,再向左平移1個單位得到點D.
(1)求直線CD的解析式;
(2)作點A關于y軸的對稱點E,將直線DB沿x軸方向平移與直線CD相交于點F,連接AF、EF,當△AEF的面積不小于21時,求F點橫坐標的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數,且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.
(1)填空:∠AOB= °,用m表示點A′的坐標:A′( , );
(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;
(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:
①求a,b,m滿足的關系式;
②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點D,E分別在BC,AC上,且BD=CE,AD與BE相交于點F,
(1)證明:△ABD≌△BCE;
(2)證明:△ABE∽△FAE;
(3)若AF=7,DF=1,求BD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象交反比例函數y=(x>0)的圖象于A(4,-8)、B(m,-2)兩點,交x軸于點C.
(1)求反比例函數與一次函數的關系式;
(2)根據圖象回答:當x為何值時,一次函數的值大于反比例函數的值?
(3)以O、A、B、P為頂點作平行四邊形,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A,B,C,D四個等級.請根據兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次抽樣調查共抽取了多少名學生?
(2)求測試結果為C等級的學生數,并補全條形圖;
(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的盒子中放有四張分別寫有數字1、2、3、4的紅色卡片和三張分別寫有數字1、2、3的藍色卡片,卡片除顏色和數字外其它完全相同。
(1)從中任意抽取一張卡片,則該卡片上寫有數字1的概率是;
(2)將3張藍色卡片取出后放入另外一個不透明的盒子內,然后在兩個盒子內各任意抽取一張卡片,以紅色卡片上的數字作為十位數,藍色卡片上的數字作為個位數組成一個兩位數,求這個兩位數大于22的概率。(請利用樹狀圖或列表法說明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的10×10網格中,已知點O,A,B均為網格線的交點.
(1)在給定的網格中,以點O為位似中心,將線段AB放大為原來的2倍,得到線段(點A,B的對應點分別為).畫出線段;
(2)將線段繞點逆時針旋轉90°得到線段.畫出線段;
(3)以為頂點的四邊形的面積是 個平方單位.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com